/* * Copyright (C) 2016 Kees Bakker, SODAQ * 2017 Inria * 2018 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup drivers_bmx280 * @{ * * @file * @brief Device driver implementation for BME280 and BMP280 sensors * * @author Kees Bakker * @author Hauke Petersen * * @} */ #include #include #include "log.h" #include "assert.h" #include "bmx280.h" #include "bmx280_internals.h" #include "xtimer.h" #define ENABLE_DEBUG 0 #include "debug.h" #ifdef BMX280_USE_SPI #define BUS (dev->params.spi) #define CS (dev->params.cs) #define CLK (dev->params.clk) #define MODE SPI_MODE_0 #define WRITE_MASK (0x7F) #else #define BUS (dev->params.i2c_dev) #define ADDR (dev->params.i2c_addr) #endif /* shortcut for accessing byte x of the latest sensor reading */ #define RAW_DATA (dev->last_reading) /* implementation for the driver's configured bus interface (I2C vs SPI) */ #ifdef BMX280_USE_SPI /* using SPI mode */ static inline int _acquire(const bmx280_t *dev) { if (spi_acquire(BUS, CS, MODE, CLK) != SPI_OK) { return BMX280_ERR_BUS; } return BMX280_OK; } static inline void _release(const bmx280_t *dev) { spi_release(BUS); } static int _read_reg(const bmx280_t *dev, uint8_t reg, uint8_t *data) { *data = spi_transfer_reg(BUS, CS, reg, 0); return BMX280_OK; } static int _write_reg(const bmx280_t *dev, uint8_t reg, uint8_t data) { (void)spi_transfer_reg(BUS, CS, (reg & WRITE_MASK), data); return BMX280_OK; } static int _read_burst(const bmx280_t *dev, uint8_t reg, void *buf, size_t len) { spi_transfer_regs(BUS, CS, reg, NULL, buf, len); return BMX280_OK; } #else /* using I2C mode */ static inline int _acquire(const bmx280_t *dev) { if (i2c_acquire(BUS) != 0) { return BMX280_ERR_BUS; } return BMX280_OK; } static inline void _release(const bmx280_t *dev) { i2c_release(BUS); } static int _read_reg(const bmx280_t *dev, uint8_t reg, uint8_t *data) { if (i2c_read_reg(BUS, ADDR, reg, data, 0) != 0) { return BMX280_ERR_BUS; } return BMX280_OK; } static int _write_reg(const bmx280_t *dev, uint8_t reg, uint8_t data) { if (i2c_write_reg(BUS, ADDR, reg, data, 0) != 0) { return BMX280_ERR_BUS; } return BMX280_OK; } static int _read_burst(const bmx280_t *dev, uint8_t reg, void *buf, size_t len) { if (i2c_read_regs(BUS, ADDR, reg, buf, len, 0) != 0) { return BMX280_ERR_BUS; } return BMX280_OK; } #endif /* bus mode selection */ static uint16_t _to_u16_le(const uint8_t *buffer, size_t offset) { return (((uint16_t)buffer[offset + 1]) << 8) | buffer[offset]; } static int16_t _to_i16_le(const uint8_t *buffer, size_t offset) { return (((int16_t)buffer[offset + 1]) << 8) | buffer[offset]; } /** * @brief Read the calibration data from sensor ROM, it is in registers * 0x88..0x9F, 0xA1, and 0xE1..0xE7 */ static int _read_calibration_data(bmx280_t *dev) { /* no need to acquire a bus here, as this is done in the init function */ /* allocate some memory to store the largest block of calibration data */ uint8_t buf[CALIB_T_P_LEN]; /* read humidity and temperature calibration data */ if (_read_burst(dev, CALIB_T_P_BASE, buf, CALIB_T_P_LEN) != BMX280_OK) { return BMX280_ERR_BUS; } /* convert calibration values to little endian format and save them */ dev->calibration.dig_T1 = _to_u16_le(buf, OFFSET_T_P(BMX280_DIG_T1_LSB_REG)); dev->calibration.dig_T2 = _to_i16_le(buf, OFFSET_T_P(BMX280_DIG_T2_LSB_REG)); dev->calibration.dig_T3 = _to_i16_le(buf, OFFSET_T_P(BMX280_DIG_T3_LSB_REG)); dev->calibration.dig_P1 = _to_u16_le(buf, OFFSET_T_P(BMX280_DIG_P1_LSB_REG)); dev->calibration.dig_P2 = _to_i16_le(buf, OFFSET_T_P(BMX280_DIG_P2_LSB_REG)); dev->calibration.dig_P3 = _to_i16_le(buf, OFFSET_T_P(BMX280_DIG_P3_LSB_REG)); dev->calibration.dig_P4 = _to_i16_le(buf, OFFSET_T_P(BMX280_DIG_P4_LSB_REG)); dev->calibration.dig_P5 = _to_i16_le(buf, OFFSET_T_P(BMX280_DIG_P5_LSB_REG)); dev->calibration.dig_P6 = _to_i16_le(buf, OFFSET_T_P(BMX280_DIG_P6_LSB_REG)); dev->calibration.dig_P7 = _to_i16_le(buf, OFFSET_T_P(BMX280_DIG_P7_LSB_REG)); dev->calibration.dig_P8 = _to_i16_le(buf, OFFSET_T_P(BMX280_DIG_P8_LSB_REG)); dev->calibration.dig_P9 = _to_i16_le(buf, OFFSET_T_P(BMX280_DIG_P9_LSB_REG)); #if defined(MODULE_BME280_SPI) || defined(MODULE_BME280_I2C) /* read dig_H1 in a single read, as this value is not in the block with the * rest of the humidity calibration values */ if (_read_reg(dev, BME280_DIG_H1_REG, &dev->calibration.dig_H1) != BMX280_OK) { return BMX280_ERR_BUS; } /* read the block with the rest of the values */ if (_read_burst(dev, CALIB_H_BASE, buf, CALIB_H_LEN) != BMX280_OK) { return BMX280_ERR_BUS; } /* parse the humidity compensation and store in device descriptor */ dev->calibration.dig_H2 = _to_i16_le(buf, OFFSET_H(BME280_DIG_H2_LSB_REG)); dev->calibration.dig_H3 = buf[OFFSET_H(BME280_DIG_H3_REG)]; dev->calibration.dig_H4 = ((((int16_t)buf[OFFSET_H(BME280_DIG_H4_MSB_REG)]) << 4) + (buf[OFFSET_H(BME280_DIG_H4_H5_REG)] & 0x0F)); dev->calibration.dig_H5 = ((((int16_t)buf[OFFSET_H(BME280_DIG_H5_MSB_REG)]) << 4) + ((buf[OFFSET_H(BME280_DIG_H4_H5_REG)] & 0xF0) >> 4)); dev->calibration.dig_H6 = buf[OFFSET_H(BME280_DIG_H6_REG)]; #endif return BMX280_OK; } /** * @brief Trigger a new measurement (if applicable) and read raw data */ static int _do_measurement(bmx280_t *dev) { uint8_t reg; /* get access to the bus */ if (_acquire(dev) != BMX280_OK) { goto err; } /* if in FORCED mode, we need to manually trigger a measurement */ if (dev->params.run_mode != BMX280_MODE_NORMAL) { reg = ((dev->params.temp_oversample << MEAS_OSRS_T_POS) | (dev->params.press_oversample << MEAS_OSRS_P_POS) | BMX280_MODE_FORCED); if (_write_reg(dev, BMX280_CTRL_MEAS_REG, reg) != BMX280_OK) { goto err; } do { if (_read_reg(dev, BMX280_STAT_REG, ®) != BMX280_OK) { goto err; } } while (reg & STAT_MEASURING); /* results are ready now */ DEBUG("[bmx280] _do_measurement: measurement data ready\n"); } /* read all raw data registers into data buffer */ if (_read_burst(dev, DATA_BASE, RAW_DATA, BMX280_RAW_LEN) != BMX280_OK) { goto err; } /* we are done reading from the device, so release the bus again */ _release(dev); return BMX280_OK; err: _release(dev); return BMX280_ERR_BUS; } int bmx280_init(bmx280_t *dev, const bmx280_params_t *params) { assert(dev && params); dev->params = *params; uint8_t reg; #ifdef BMX280_USE_SPI /* configure the chip-select pin */ if (spi_init_cs(BUS, CS) != SPI_OK) { DEBUG("[bmx280] error: unable to configure chip the select pin\n"); return BMX280_ERR_BUS; } #endif /* acquire bus bus, this also tests the bus parameters in SPI mode */ if (_acquire(dev) != BMX280_OK) { DEBUG("[bmx280] error: unable to acquire bus\n"); return BMX280_ERR_BUS; } /* test the connection to the device by reading and verifying its chip ID */ if (_read_reg(dev, BMX280_CHIP_ID_REG, ®) != BMX280_OK) { DEBUG("[bmx280] error: unable to read chip ID from device\n"); _release(dev); return BMX280_ERR_NODEV; } if (reg != BMX280_CHIP_ID_VAL) { DEBUG("[bmx280] error: invalid chip ID (0x%02x)\n", (int)reg); _release(dev); return BMX280_ERR_NODEV; } /* trigger a power-on reset sequence to reset all registers */ if (_write_reg(dev, BMEX80_RST_REG, RESET_WORD) != BMX280_OK) { goto err; } /* wait for reset sequence to finish */ do { if (_read_reg(dev, BMX280_STAT_REG, ®) != BMX280_OK) { goto err; } } while (reg != 0); /* read the compensation data from the sensor's ROM */ if (_read_calibration_data(dev) != BMX280_OK) { DEBUG("[bmx280] error: could not read calibration data\n"); goto err; } /* write basic device configuration: t_sb and filter values */ reg = (dev->params.t_sb | dev->params.filter); if (_write_reg(dev, BMX280_CONFIG_REG, reg) != BMX280_OK) { goto err; } #if defined(MODULE_BME280_SPI) || defined(MODULE_BME280_I2C) /* ctrl_hum must be written before ctrl_meas for changes to become * effective */ reg = dev->params.humid_oversample; if (_write_reg(dev, BME280_CTRL_HUM_REG, reg) != BMX280_OK) { goto err; } #endif /* finally apply the temperature and pressure oversampling configuration and * configure the run mode */ reg = ((dev->params.temp_oversample << MEAS_OSRS_T_POS) | (dev->params.press_oversample << MEAS_OSRS_P_POS) | (dev->params.run_mode)); if (_write_reg(dev, BMX280_CTRL_MEAS_REG, reg) != BMX280_OK) { goto err; } _release(dev); return BMX280_OK; err: _release(dev); DEBUG("[bmx280] init: bus error while initializing device\n"); return BMX280_ERR_BUS; } int16_t bmx280_read_temperature(bmx280_t *dev) { assert(dev); if (_do_measurement(dev) < 0) { return INT16_MIN; } const bmx280_calibration_t *cal = &dev->calibration; /* helper variable */ /* Read the uncompensated temperature */ int32_t adc_T = (((uint32_t)RAW_DATA[3 + 0]) << 12) | (((uint32_t)RAW_DATA[3 + 1]) << 4) | ((((uint32_t)RAW_DATA[3 + 2]) >> 4) & 0x0F); /* * Compensate the temperature value. * The following is code from Bosch's BME280_driver * bme280_compensate_temperature_int32(). The variable names and the many * defines have been modified to make the code more readable. */ int32_t var1; int32_t var2; var1 = ((((adc_T >> 3) - ((int32_t)cal->dig_T1 << 1))) * ((int32_t)cal->dig_T2)) >> 11; var2 = (((((adc_T >> 4) - ((int32_t)cal->dig_T1)) * ((adc_T >> 4) - ((int32_t)cal->dig_T1))) >> 12) * ((int32_t)cal->dig_T3)) >> 14; /* calculate t_fine (used for pressure and humidity too) */ dev->t_fine = var1 + var2; return (dev->t_fine * 5 + 128) >> 8; } uint32_t bmx280_read_pressure(bmx280_t *dev) { assert(dev); bmx280_read_temperature(dev); const bmx280_calibration_t *cal = &dev->calibration; /* helper variable */ /* Read the uncompensated pressure */ int32_t adc_P = (((uint32_t)RAW_DATA[0 + 0]) << 12) | (((uint32_t)RAW_DATA[0 + 1]) << 4) | ((((uint32_t)RAW_DATA[0 + 2]) >> 4) & 0x0F); int64_t var1; int64_t var2; int64_t p_acc; /* * Compensate the pressure value. * The following is code from Bosch's BME280_driver * bme280_compensate_pressure_int64(). The variable names and the many * defines have been modified to make the code more readable. */ var1 = ((int64_t)dev->t_fine) - 128000; var2 = var1 * var1 * (int64_t)cal->dig_P6; var2 = var2 + ((var1 * (int64_t)cal->dig_P5) << 17); var2 = var2 + (((int64_t)cal->dig_P4) << 35); var1 = ((var1 * var1 * (int64_t)cal->dig_P3) >> 8) + ((var1 * (int64_t)cal->dig_P2) << 12); var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)cal->dig_P1) >> 33; /* Avoid division by zero */ if (var1 == 0) { return UINT32_MAX; } p_acc = 1048576 - adc_P; p_acc = (((p_acc << 31) - var2) * 3125) / var1; var1 = (((int64_t)cal->dig_P9) * (p_acc >> 13) * (p_acc >> 13)) >> 25; var2 = (((int64_t)cal->dig_P8) * p_acc) >> 19; p_acc = ((p_acc + var1 + var2) >> 8) + (((int64_t)cal->dig_P7) << 4); return p_acc >> 8; } #if defined(MODULE_BME280_SPI) || defined(MODULE_BME280_I2C) uint16_t bme280_read_humidity(bmx280_t *dev) { assert(dev); bmx280_read_temperature(dev); const bmx280_calibration_t *cal = &dev->calibration; /* helper variable */ /* Read the uncompensated pressure */ int32_t adc_H = (((uint32_t)RAW_DATA[6 + 0]) << 8) | (((uint32_t)RAW_DATA[6 + 1])); /* * Compensate the humidity value. * The following is code from Bosch's BME280_driver * bme280_compensate_humidity_int32(). The variable names and the many * defines have been modified to make the code more readable. * The value is first computed as a value in %rH as unsigned 32bit integer * in Q22.10 format(22 integer 10 fractional bits). */ int32_t var1; /* calculate x1*/ var1 = (dev->t_fine - ((int32_t)76800)); /* calculate x1*/ var1 = (((((adc_H << 14) - (((int32_t)cal->dig_H4) << 20) - (((int32_t)cal->dig_H5) * var1)) + ((int32_t)16384)) >> 15) * (((((((var1 * ((int32_t)cal->dig_H6)) >> 10) * (((var1 * ((int32_t)cal->dig_H3)) >> 11) + ((int32_t)32768))) >> 10) + ((int32_t)2097152)) * ((int32_t)cal->dig_H2) + 8192) >> 14)); var1 = (var1 - (((((var1 >> 15) * (var1 >> 15)) >> 7) * ((int32_t)cal->dig_H1)) >> 4)); var1 = (var1 < 0) ? 0 : var1; var1 = (var1 > 419430400) ? 419430400 : var1; /* First multiply to avoid losing the accuracy after the shift by ten */ return (100 * ((uint32_t)var1 >> 12)) >> 10; } #endif