/* * Copyright (C) 2014 Freie UniversitÀt Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_samd21 * @{ * * @file * @brief Low-level SPI driver implementation * * @author Thomas Eichinger * @author Troels Hoffmeyer * @author Hauke Petersen * @author Joakim NohlgÄrd * * @} */ #include "cpu.h" #include "mutex.h" #include "periph/gpio.h" #include "periph/spi.h" #include "periph_conf.h" #include "board.h" #define ENABLE_DEBUG (0) #include "debug.h" #if SPI_0_EN || SPI_1_EN /** * @brief Internal helper function to do the actual work for spi_poweroff */ static void _spi_poweroff(SercomSpi* spi_dev); /** * @brief Internal helper function to do the actual work for spi_poweron */ static void _spi_poweron(SercomSpi* spi_dev); /** * @brief Array holding one pre-initialized mutex for each SPI device */ static mutex_t locks[] = { #if SPI_0_EN [SPI_0] = MUTEX_INIT, #endif #if SPI_1_EN [SPI_1] = MUTEX_INIT, #endif #if SPI_2_EN [SPI_2] = MUTEX_INIT #endif }; int spi_init_master(spi_t dev, spi_conf_t conf, spi_speed_t speed) { SercomSpi* spi_dev = 0; uint8_t dopo = 0; uint8_t dipo = 0; uint8_t cpha = 0; uint8_t cpol = 0; uint32_t f_baud = 0; switch (speed) { case SPI_SPEED_100KHZ: f_baud = 100000; break; case SPI_SPEED_400KHZ: f_baud = 400000; break; case SPI_SPEED_1MHZ: f_baud = 1000000; break; case SPI_SPEED_5MHZ: #if CLOCK_CORECLOCK >= 5000000 f_baud = 5000000; break; #else return -1; #endif case SPI_SPEED_10MHZ: #if CLOCK_CORECLOCK >= 10000000 f_baud = 10000000; break; #else return -1; #endif } switch (conf) { case SPI_CONF_FIRST_RISING: /**< first data bit is transacted on the first rising SCK edge */ cpha = 0; cpol = 0; break; case SPI_CONF_SECOND_RISING:/**< first data bit is transacted on the second rising SCK edge */ cpha = 1; cpol = 0; break; case SPI_CONF_FIRST_FALLING:/**< first data bit is transacted on the first falling SCK edge */ cpha = 0; cpol = 1; break; case SPI_CONF_SECOND_FALLING:/**< first data bit is transacted on the second falling SCK edge */ cpha = 1; cpol = 1; break; } switch (dev) { #if SPI_0_EN case SPI_0: spi_dev = &SPI_0_DEV; /* Enable sercom4 in power manager */ PM->APBCMASK.reg |= PM_APBCMASK_SERCOM4; GCLK->CLKCTRL.reg = (uint32_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | (SERCOM4_GCLK_ID_CORE << GCLK_CLKCTRL_ID_Pos))); /* Setup clock */ while (GCLK->STATUS.bit.SYNCBUSY) {} /* Mux enable*/ SPI_0_SCLK_DEV.PINCFG[ SPI_0_SCLK_PIN ].bit.PMUXEN = 1; SPI_0_MISO_DEV.PINCFG[ SPI_0_MISO_PIN ].bit.PMUXEN = 1; SPI_0_MOSI_DEV.PINCFG[ SPI_0_MOSI_PIN ].bit.PMUXEN = 1; /*Set mux function to spi. seperate registers, for even or odd pins */ SPI_0_SCLK_DEV.PMUX[ SPI_0_SCLK_PIN / 2].bit.PMUXE = 5; SPI_0_MISO_DEV.PMUX[ SPI_0_MISO_PIN / 2].bit.PMUXO = 5; SPI_0_MOSI_DEV.PMUX[ SPI_0_MOSI_PIN / 2].bit.PMUXE = 5; /* SCLK+MOSI */ SPI_0_SCLK_DEV.DIRSET.reg = 1 << SPI_0_SCLK_PIN; SPI_0_MOSI_DEV.DIRSET.reg = 1 << SPI_0_MOSI_PIN; /* MISO = input */ /* configure as input */ SPI_0_MISO_DEV.DIRCLR.reg = 1 << SPI_0_MISO_PIN; SPI_0_MISO_DEV.PINCFG[ SPI_0_MISO_PIN ].bit.INEN = true; SPI_0_MISO_DEV.OUTCLR.reg = 1 << SPI_0_MISO_PIN; SPI_0_MISO_DEV.PINCFG[ SPI_0_MISO_PIN ].bit.PULLEN = true; dopo = SPI_0_DOPO; dipo = SPI_0_DIPO; break; #endif #if SPI_1_EN case SPI_1: spi_dev = &SPI_1_DEV; /* Enable sercom5 in power manager */ PM->APBCMASK.reg |= PM_APBCMASK_SERCOM5; /* Setup clock */ /* configure GCLK0 to feed sercom5 */; GCLK->CLKCTRL.reg = (uint32_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | (SERCOM5_GCLK_ID_CORE << GCLK_CLKCTRL_ID_Pos))); /* Mux enable*/ SPI_1_SCLK_DEV.PINCFG[ SPI_1_SCLK_PIN ].bit.PMUXEN = 1; SPI_1_MISO_DEV.PINCFG[ SPI_1_MISO_PIN ].bit.PMUXEN = 1; SPI_1_MOSI_DEV.PINCFG[ SPI_1_MOSI_PIN ].bit.PMUXEN = 1; /*Set mux function to spi. seperate registers, for even or odd pins */ SPI_1_SCLK_DEV.PMUX[ SPI_1_SCLK_PIN / 2].bit.PMUXO = 3; SPI_1_MISO_DEV.PMUX[ SPI_1_MISO_PIN / 2].bit.PMUXE = 3; SPI_1_MOSI_DEV.PMUX[ SPI_1_MOSI_PIN / 2].bit.PMUXE = 3; /* SCLK+MOSI */ SPI_1_SCLK_DEV.DIRSET.reg = 1 << SPI_1_SCLK_PIN; SPI_1_MOSI_DEV.DIRSET.reg = 1 << SPI_1_MOSI_PIN; /* MISO = input */ /* configure as input */ SPI_1_MISO_DEV.DIRCLR.reg = 1 << SPI_1_MISO_PIN; SPI_1_MISO_DEV.PINCFG[ SPI_1_MISO_PIN ].bit.INEN = true; SPI_1_MISO_DEV.OUTCLR.reg = 1 << SPI_1_MISO_PIN; SPI_1_MISO_DEV.PINCFG[SPI_1_MISO_PIN].bit.PULLEN = true; dopo = SPI_1_DOPO; dipo = SPI_1_DIPO; break; #endif default: return -1; } /* Disable spi to write confs */ _spi_poweroff(spi_dev); spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_MODE_SPI_MASTER; while (spi_dev->SYNCBUSY.reg) {} // ???? not needed spi_dev->BAUD.bit.BAUD = (uint8_t) (((uint32_t)CLOCK_CORECLOCK) / (2 * f_baud) - 1); /* Synchronous mode*/ spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_DOPO(dopo) | SERCOM_SPI_CTRLA_DIPO(dipo) | (cpha << SERCOM_SPI_CTRLA_CPHA_Pos) | (cpol << SERCOM_SPI_CTRLA_CPOL_Pos); while (spi_dev->SYNCBUSY.reg) {} // ???? not needed /* datasize 0 => 8 bits */ spi_dev->CTRLB.reg = (SERCOM_SPI_CTRLB_CHSIZE(0) | SERCOM_SPI_CTRLB_RXEN); while (spi_dev->SYNCBUSY.reg) {} // ???? Only wait for clear of spi_dev->SYNCBUSY.bit.CTRLB /* enable */ _spi_poweron(spi_dev); return 0; } int spi_init_slave(spi_t dev, spi_conf_t conf, char (*cb)(char)) { /* TODO */ return -1; } void spi_transmission_begin(spi_t dev, char reset_val) { /* TODO*/ } int spi_acquire(spi_t dev) { if ((unsigned int)dev >= SPI_NUMOF) { return -1; } mutex_lock(&locks[dev]); return 0; } int spi_release(spi_t dev) { if ((unsigned int)dev >= SPI_NUMOF) { return -1; } mutex_unlock(&locks[dev]); return 0; } int spi_transfer_byte(spi_t dev, char out, char *in) { SercomSpi* spi_dev = 0; char tmp; switch(dev) { #if SPI_0_EN case SPI_0: spi_dev = &(SPI_0_DEV); break; #endif #if SPI_1_EN case SPI_1: spi_dev = &(SPI_1_DEV); break; #endif } while (!spi_dev->INTFLAG.bit.DRE) {} /* while data register is not empty*/ spi_dev->DATA.bit.DATA = out; while (!spi_dev->INTFLAG.bit.RXC) {} /* while receive is not complete*/ tmp = (char)spi_dev->DATA.bit.DATA; if (in != NULL) { in[0] = tmp; } return 1; } static void _spi_poweron(SercomSpi* spi_dev) { if (spi_dev == NULL) { return; } spi_dev->CTRLA.reg |= SERCOM_SPI_CTRLA_ENABLE; while (spi_dev->SYNCBUSY.bit.ENABLE) {} } void spi_poweron(spi_t dev) { switch(dev) { #if SPI_0_EN case SPI_0: _spi_poweron(&SPI_0_DEV); break; #endif #if SPI_1_EN case SPI_1: _spi_poweron(&SPI_1_DEV); break; #endif } } static void _spi_poweroff(SercomSpi* spi_dev) { if (spi_dev == NULL) { return; } spi_dev->CTRLA.bit.ENABLE = 0; /* Disable spi */ while (spi_dev->SYNCBUSY.bit.ENABLE) {} } void spi_poweroff(spi_t dev) { switch(dev) { #if SPI_0_EN case SPI_0: _spi_poweroff(&SPI_0_DEV); break; #endif #if SPI_1_EN case SPI_1: _spi_poweroff(&SPI_1_DEV); break; #endif } } #endif /* SPI_0_EN || SPI_1_EN */