/* * Copyright (C) 2014 Freie Universität Berlin, Hinnerk van Bruinehsen * 2017 Thomas Perrot * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_atmega_common * @ingroup drivers_periph_uart * @{ * * @file * @brief Low-level UART driver implementation * * @author Hauke Petersen * @author Hinnerk van Bruinehsen * @author Thomas Perrot * * * Support static BAUD rate calculation using STDIO_UART_BAUDRATE. * Set STDIO_UART_BAUDRATE to the desired baud rate and pass it as a -D argument * at compliation time (e.g. in the boards Makefile.include file). * UART_BAUD_TOL can be set to guarantee a BAUD rate tolerance at compile time or * to switch to double speed transmission (U2X) to achieve a lower tolerance. * At runtime, this tolerance is not guaranteed to be met. * However, an error message will be displayed at compile time. * * @} */ #include "cpu.h" #include "sched.h" #include "thread.h" #include "periph/uart.h" /** * @brief Maximum percentage error in calculated baud before switching to * double speed transmission (U2X) * * Takes whole numbers from 0 to 100, inclusive, with a default of 2. */ #if defined(UART_BAUD_TOL) /* BAUD_TOL is defined here as it is used by the setbaud.h utility */ #define BAUD_TOL UART_BAUD_TOL #else #define BAUD_TOL 2 #endif #if defined(STDIO_UART_BAUDRATE) /* BAUD and F_CPU are required by setbaud.h to calculated BRR */ #define BAUD STDIO_UART_BAUDRATE #define F_CPU CLOCK_CORECLOCK #include #endif /** * @brief Configured device map */ static mega_uart_t *dev[] = { #ifdef UART_0 UART_0, #endif #ifdef UART_1 UART_1, #endif #ifdef UART_2 UART_2, #endif #ifdef UART_3 UART_3 #endif }; /** * @brief Allocate memory to store the callback functions. */ static uart_isr_ctx_t isr_ctx[UART_NUMOF]; /** * @brief Allocate variable to hold transmission status, set when there * is data in UDRn or in the Transmit Shift Register */ static volatile uint8_t _tx_pending = 0; static void _update_brr(uart_t uart, uint16_t brr, bool double_speed) { dev[uart]->BRR = brr; if (double_speed) { #ifdef CPU_ATMEGA32U4 dev[uart]->CSRA |= (1 << U2X1); #else dev[uart]->CSRA |= (1 << U2X0); #endif } } static void _set_brr(uart_t uart, uint32_t baudrate) { uint16_t brr; #if defined(STDIO_UART_BAUDRATE) /* UBRR_VALUE and USE_2X are statically computed from */ if (baudrate == STDIO_UART_BAUDRATE) { _update_brr(uart, UBRR_VALUE, USE_2X); return; } #endif /* brr calculation is different from the datasheet to provide better rounding */ #if defined(UART_DOUBLE_SPEED) brr = (CLOCK_CORECLOCK + 4UL * baudrate) / (8UL * baudrate) - 1UL; _update_brr(uart, brr, true); #else brr = (CLOCK_CORECLOCK + 8UL * baudrate) / (16UL * baudrate) - 1UL; _update_brr(uart, brr, false); #endif } int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) { /* make sure the given device is valid */ if (uart >= UART_NUMOF) { return UART_NODEV; } uint16_t count = 0xffff; while (_tx_pending && count--) {} /* register interrupt context */ isr_ctx[uart].rx_cb = rx_cb; isr_ctx[uart].arg = arg; /* disable and reset UART */ #ifdef CPU_ATMEGA32U4 dev[uart]->CSRD = 0; #endif dev[uart]->CSRB = 0; dev[uart]->CSRA = 0; /* configure UART to 8N1 mode */ #ifdef CPU_ATMEGA32U4 dev[uart]->CSRC = (1 << UCSZ10) | (1 << UCSZ11); #else dev[uart]->CSRC = (1 << UCSZ00) | (1 << UCSZ01); #endif /* set clock divider */ _set_brr(uart, baudrate); /* enable RX and TX and their respective interrupt */ if (rx_cb) { #ifdef CPU_ATMEGA32U4 dev[uart]->CSRB = ((1 << RXCIE1) | (1 << TXCIE1) | (1 << RXEN1) | (1 << TXEN1)); #else dev[uart]->CSRB = ((1 << RXCIE0) | (1 << TXCIE0) | (1 << RXEN0) | (1 << TXEN0)); #endif } else { #ifdef CPU_ATMEGA32U4 dev[uart]->CSRB = ((1 << TXEN1) | (1 << TXCIE1)); #else dev[uart]->CSRB = ((1 << TXEN0) | (1 << TXCIE0)); #endif } return UART_OK; } void uart_write(uart_t uart, const uint8_t *data, size_t len) { for (size_t i = 0; i < len; i++) { #ifdef CPU_ATMEGA32U4 while (!(dev[uart]->CSRA & (1 << UDRE1))) {}; #else while (!(dev[uart]->CSRA & (1 << UDRE0))) {} #endif /* start of TX won't finish until no data in UDRn and transmit shift register is empty */ _tx_pending |= (1 << uart); dev[uart]->DR = data[i]; } } void uart_poweron(uart_t uart) { (void)uart; /* not implemented (yet) */ } void uart_poweroff(uart_t uart) { (void)uart; /* not implemented (yet) */ } static inline void _rx_isr_handler(int num) { atmega_enter_isr(); isr_ctx[num].rx_cb(isr_ctx[num].arg, dev[num]->DR); atmega_exit_isr(); } static inline void _tx_isr_handler(int num) { atmega_enter_isr(); /* entire frame in the Transmit Shift Register has been shifted out and there are no new data currently present in the transmit buffer */ _tx_pending &= ~(1 << num); atmega_exit_isr(); } #ifdef UART_0_ISR ISR(UART_0_ISR, ISR_BLOCK) { _rx_isr_handler(0); } #endif /* UART_0_ISR */ #ifdef UART_1_ISR ISR(UART_1_ISR, ISR_BLOCK) { _rx_isr_handler(1); } #endif /* UART_1_ISR */ #ifdef UART_2_ISR ISR(UART_2_ISR, ISR_BLOCK) { _rx_isr_handler(2); } #endif /* UART_2_ISR */ #ifdef UART_3_ISR ISR(UART_3_ISR, ISR_BLOCK) { _rx_isr_handler(3); } #endif /* UART_3_ISR */ #ifdef UART_0_ISR_TX ISR(UART_0_ISR_TX, ISR_BLOCK) { _tx_isr_handler(0); } #endif /* UART_0_ISR_TX */ #ifdef UART_1_ISR_TX ISR(UART_1_ISR_TX, ISR_BLOCK) { _tx_isr_handler(1); } #endif /* UART_1_ISR_TX */ #ifdef UART_2_ISR_TX ISR(UART_2_ISR_TX, ISR_BLOCK) { _tx_isr_handler(2); } #endif /* UART_2_ISR_TX */ #ifdef UART_3_ISR_TX ISR(UART_3_ISR_TX, ISR_BLOCK) { _tx_isr_handler(3); } #endif /* UART_3_ISR_TX */