/* * Copyright (C) 2014 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup core_sched * @{ * * @file sched.c * @brief Scheduler implementation * * @author Freie Universität Berlin, Computer Systems & Telematics * @author Kaspar Schleiser * * @} * * TODO: setup dependency from SCHEDSTATISTICS to MODULE_HWTIMER */ #include #include "sched.h" #include "kernel.h" #include "kernel_internal.h" #include "clist.h" #include "bitarithm.h" #include "irq.h" #include "thread.h" #include "irq.h" #if SCHEDSTATISTICS #include "hwtimer.h" #endif #define ENABLE_DEBUG (0) #include "debug.h" volatile int sched_num_threads = 0; volatile unsigned int sched_context_switch_request; volatile tcb_t *sched_threads[MAXTHREADS]; volatile tcb_t *sched_active_thread; volatile int sched_active_pid = -1; volatile int thread_last_pid = -1; clist_node_t *sched_runqueues[SCHED_PRIO_LEVELS]; static uint32_t runqueue_bitcache = 0; #if SCHEDSTATISTICS static void (*sched_cb) (uint32_t timestamp, uint32_t value) = NULL; schedstat sched_pidlist[MAXTHREADS]; #endif void sched_run(void) { sched_context_switch_request = 0; tcb_t *my_active_thread = (tcb_t *)sched_active_thread; if (my_active_thread) { if (my_active_thread->status == STATUS_RUNNING) { my_active_thread->status = STATUS_PENDING; } #ifdef SCHED_TEST_STACK if (*((unsigned int *)my_active_thread->stack_start) != (unsigned int) my_active_thread->stack_start) { printf("scheduler(): stack overflow detected, task=%s pid=%u\n", my_active_thread->name, my_active_thread->pid); } #endif } #ifdef SCHEDSTATISTICS unsigned long time = hwtimer_now(); if (my_active_thread && (sched_pidlist[my_active_thread->pid].laststart)) { sched_pidlist[my_active_thread->pid].runtime_ticks += time - sched_pidlist[my_active_thread->pid].laststart; } #endif DEBUG("\nscheduler: previous task: %s\n", (my_active_thread == NULL) ? "none" : my_active_thread->name); if (sched_num_threads == 0) { DEBUG("scheduler: no tasks left.\n"); while (!sched_num_threads) { /* loop until a new task arrives */ ; } DEBUG("scheduler: new task created.\n"); } my_active_thread = NULL; while (!my_active_thread) { int nextrq = bitarithm_lsb(runqueue_bitcache); clist_node_t next = *(sched_runqueues[nextrq]); DEBUG("scheduler: first in queue: %s\n", ((tcb_t *)next.data)->name); clist_advance(&(sched_runqueues[nextrq])); my_active_thread = (tcb_t *)next.data; sched_active_pid = (volatile int) my_active_thread->pid; #if SCHEDSTATISTICS sched_pidlist[my_active_thread->pid].laststart = time; sched_pidlist[my_active_thread->pid].schedules++; if ((sched_cb) && (my_active_thread->pid != thread_last_pid)) { sched_cb(hwtimer_now(), my_active_thread->pid); thread_last_pid = my_active_thread->pid; } #endif #ifdef MODULE_NSS if (sched_active_thread && sched_active_thread->pid != thread_last_pid) { thread_last_pid = sched_active_thread->pid; } #endif } DEBUG("scheduler: next task: %s\n", my_active_thread->name); if (my_active_thread != sched_active_thread) { if (sched_active_thread != NULL) { /* TODO: necessary? */ if (sched_active_thread->status == STATUS_RUNNING) { sched_active_thread->status = STATUS_PENDING ; } } sched_set_status((tcb_t *)my_active_thread, STATUS_RUNNING); } sched_active_thread = (volatile tcb_t *) my_active_thread; DEBUG("scheduler: done.\n"); } #if SCHEDSTATISTICS void sched_register_cb(void (*callback)(uint32_t, uint32_t)) { sched_cb = callback; } #endif void sched_set_status(tcb_t *process, unsigned int status) { if (status >= STATUS_ON_RUNQUEUE) { if (!(process->status >= STATUS_ON_RUNQUEUE)) { DEBUG("adding process %s to runqueue %u.\n", process->name, process->priority); clist_add(&sched_runqueues[process->priority], &(process->rq_entry)); runqueue_bitcache |= 1 << process->priority; } } else { if (process->status >= STATUS_ON_RUNQUEUE) { DEBUG("removing process %s from runqueue %u.\n", process->name, process->priority); clist_remove(&sched_runqueues[process->priority], &(process->rq_entry)); if (!sched_runqueues[process->priority]) { runqueue_bitcache &= ~(1 << process->priority); } } } process->status = status; } void sched_switch(uint16_t current_prio, uint16_t other_prio) { int in_isr = inISR(); DEBUG("%s: %i %i %i\n", sched_active_thread->name, (int)current_prio, (int)other_prio, in_isr); if (current_prio >= other_prio) { if (in_isr) { sched_context_switch_request = 1; } else { thread_yield(); } } } NORETURN void sched_task_exit(void) { DEBUG("sched_task_exit(): ending task %s...\n", sched_active_thread->name); dINT(); sched_threads[sched_active_thread->pid] = NULL; sched_num_threads--; sched_set_status((tcb_t *)sched_active_thread, STATUS_STOPPED); sched_active_thread = NULL; cpu_switch_context_exit(); }