/* * Copyright (C) 2014 Baptiste CLENET * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_sam0_common * @ingroup drivers_periph_rtc * @{ * * @file * @brief Low-level RTC driver implementation * * @author Baptiste Clenet * @author ported to SAML21 by FWX * @} */ #include #include "cpu.h" #include "periph/rtc.h" #include "periph_conf.h" /* SAML21 rev B needs an extra bit, which in rev A defaults to 1, but isn't * visible. Thus define it here. */ #ifndef RTC_MODE2_CTRLA_CLOCKSYNC #define RTC_MODE2_CTRLA_CLOCKSYNC_Pos 15 #define RTC_MODE2_CTRLA_CLOCKSYNC (0x1ul << RTC_MODE2_CTRLA_CLOCKSYNC_Pos) #endif typedef struct { rtc_alarm_cb_t cb; /**< callback called from RTC interrupt */ void *arg; /**< argument passed to the callback */ } rtc_state_t; static rtc_state_t rtc_callback; /* At 1Hz, RTC goes till 63 years (2^5, see 17.8.22 in datasheet) * reference_year is set to 100 (offset) to be in our current time (2000) * Thanks to this, the user will be able to set time in 2000's*/ static uint16_t reference_year = 100; static void _wait_syncbusy(void) { #ifdef REG_RTC_MODE2_SYNCBUSY while (RTC->MODE2.SYNCBUSY.reg) {} #else while (RTC->MODE2.STATUS.bit.SYNCBUSY) {} #endif } static inline void _rtc_set_enabled(bool on) { #ifdef REG_RTC_MODE2_CTRLA RTC->MODE2.CTRLA.bit.ENABLE = on; #else RTC->MODE2.CTRL.bit.ENABLE = on; #endif _wait_syncbusy(); } #ifdef CPU_SAMD21 static void _rtc_clock_setup(void) { /* Use 1024 Hz GCLK4 */ GCLK->CLKCTRL.reg = GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN(4) | GCLK_CLKCTRL_ID_RTC; while (GCLK->STATUS.bit.SYNCBUSY) {} } #else static void _rtc_clock_setup(void) { /* RTC source clock is external oscillator at 1kHz */ #if EXTERNAL_OSC32_SOURCE OSC32KCTRL->XOSC32K.bit.EN1K = 1; OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_XOSC1K; /* RTC uses internal 32,768KHz Oscillator */ #elif INTERNAL_OSC32_SOURCE OSC32KCTRL->OSC32K.bit.EN1K = 1; OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_OSC1K; /* RTC uses Ultra Low Power internal 32,768KHz Oscillator */ #elif ULTRA_LOW_POWER_INTERNAL_OSC_SOURCE OSC32KCTRL->RTCCTRL.reg = OSC32KCTRL_RTCCTRL_RTCSEL_ULP1K; #else #error "No clock source for RTC selected. " #endif } #endif /* !CPU_SAMD21 - Clock Setup */ void rtc_init(void) { _rtc_clock_setup(); rtc_poweron(); _rtc_set_enabled(0); /* RTC config with RTC_MODE2_CTRL_CLKREP = 0 (24h) */ #ifdef REG_RTC_MODE2_CTRLA RTC->MODE2.CTRLA.reg = RTC_MODE2_CTRLA_PRESCALER_DIV1024 /* CLK_RTC_CNT = 1KHz / 1024 -> 1Hz */ | RTC_MODE2_CTRLA_CLOCKSYNC /* Clock Read Synchronization Enable */ | RTC_MODE2_CTRLA_MODE_CLOCK; #else RTC->MODE2.CTRL.reg = RTC_MODE2_CTRL_PRESCALER_DIV1024 | RTC_MODE2_CTRL_MODE_CLOCK; #endif RTC->MODE2.INTENSET.reg = RTC_MODE2_INTENSET_OVF; /* Clear interrupt flags */ RTC->MODE2.INTFLAG.reg |= RTC_MODE2_INTFLAG_OVF; RTC->MODE2.INTFLAG.reg |= RTC_MODE2_INTFLAG_ALARM0; _rtc_set_enabled(1); } int rtc_set_time(struct tm *time) { /* normalize input */ rtc_tm_normalize(time); if ((time->tm_year < reference_year) || (time->tm_year > reference_year + 63)) { return -1; } else { RTC->MODE2.CLOCK.reg = RTC_MODE2_CLOCK_YEAR(time->tm_year - reference_year) | RTC_MODE2_CLOCK_MONTH(time->tm_mon + 1) | RTC_MODE2_CLOCK_DAY(time->tm_mday) | RTC_MODE2_CLOCK_HOUR(time->tm_hour) | RTC_MODE2_CLOCK_MINUTE(time->tm_min) | RTC_MODE2_CLOCK_SECOND(time->tm_sec); } _wait_syncbusy(); return 0; } int rtc_get_time(struct tm *time) { RTC_MODE2_CLOCK_Type clock; /* Read register in one time */ clock.reg = RTC->MODE2.CLOCK.reg; time->tm_year = clock.bit.YEAR + reference_year; if ((time->tm_year < reference_year) || (time->tm_year > (reference_year + 63))) { return -1; } time->tm_mon = clock.bit.MONTH - 1; time->tm_mday = clock.bit.DAY; time->tm_hour = clock.bit.HOUR; time->tm_min = clock.bit.MINUTE; time->tm_sec = clock.bit.SECOND; return 0; } int rtc_set_alarm(struct tm *time, rtc_alarm_cb_t cb, void *arg) { /* normalize input */ rtc_tm_normalize(time); rtc_clear_alarm(); if ((time->tm_year < reference_year) || (time->tm_year > (reference_year + 63))) { return -2; } else { RTC->MODE2.Mode2Alarm[0].ALARM.reg = RTC_MODE2_ALARM_YEAR(time->tm_year - reference_year) | RTC_MODE2_ALARM_MONTH(time->tm_mon + 1) | RTC_MODE2_ALARM_DAY(time->tm_mday) | RTC_MODE2_ALARM_HOUR(time->tm_hour) | RTC_MODE2_ALARM_MINUTE(time->tm_min) | RTC_MODE2_ALARM_SECOND(time->tm_sec); RTC->MODE2.Mode2Alarm[0].MASK.reg = RTC_MODE2_MASK_SEL(6); } _wait_syncbusy(); /* Setup interrupt */ NVIC_EnableIRQ(RTC_IRQn); /* Enable IRQ */ rtc_callback.cb = cb; rtc_callback.arg = arg; RTC->MODE2.INTFLAG.reg |= RTC_MODE2_INTFLAG_ALARM0; RTC->MODE2.INTENSET.bit.ALARM0 = 1; return 0; } int rtc_get_alarm(struct tm *time) { RTC_MODE2_ALARM_Type alarm; /* Read alarm register in one time */ alarm.reg = RTC->MODE2.Mode2Alarm[0].ALARM.reg; time->tm_year = alarm.bit.YEAR + reference_year; if ((time->tm_year < reference_year) || (time->tm_year > (reference_year + 63))) { return -1; } time->tm_mon = alarm.bit.MONTH - 1; time->tm_mday = alarm.bit.DAY; time->tm_hour = alarm.bit.HOUR; time->tm_min = alarm.bit.MINUTE; time->tm_sec = alarm.bit.SECOND; return 0; } void rtc_clear_alarm(void) { /* disable interrupt */ RTC->MODE2.INTENCLR.bit.ALARM0 = 1; rtc_callback.cb = NULL; rtc_callback.arg = NULL; } void rtc_poweron(void) { #ifdef MCLK MCLK->APBAMASK.reg |= MCLK_APBAMASK_RTC; #else PM->APBAMASK.reg |= PM_APBAMASK_RTC; #endif } void rtc_poweroff(void) { #ifdef MCLK MCLK->APBAMASK.reg &= ~MCLK_APBAMASK_RTC; #else PM->APBAMASK.reg &= ~PM_APBAMASK_RTC; #endif } void isr_rtc(void) { if (RTC->MODE2.INTFLAG.bit.ALARM0) { rtc_callback.cb(rtc_callback.arg); /* clear flag */ RTC->MODE2.INTFLAG.reg |= RTC_MODE2_INTFLAG_ALARM0; } if (RTC->MODE2.INTFLAG.bit.OVF) { /* clear flag */ RTC->MODE2.INTFLAG.reg |= RTC_MODE2_INTFLAG_OVF; /* At 1Hz, RTC goes till 63 years (2^5, see 17.8.22 in datasheet) * Start RTC again with reference_year 64 years more (Be careful with alarm set) */ reference_year += 64; } cortexm_isr_end(); }