/* * Copyright (C) 2015-2017 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @defgroup drivers_nrf5x_nrfmin NRF Minimal Radio Driver * @ingroup drivers_netdev_netdev2 * @brief Minimal driver for the NRF51 radio * * This driver uses the nRF5x radio in a proprietary/custom way, defining our * own custom link layer. This custom link layer resembles some characteristics * of the IEEE802.15.4 link layer, but is not at all compatible to it. * * One key point is, that this custom link layer is only meant to operate * between nRF5x devices, which let's us make some very nice assumptions: * - all communicating hosts are little-endian * -> we define host byte order := network byte order * * The driver is using a Nordic proprietary physical layer, configured to a * bitrate of 2Mbit. The maximum payload length can be freely configured, but * the maximal supported value is 250 byte (default is 200 byte). * * We define the nrfmin link layer to use 16-bit addresses. On the physical * layer we encode these addresses by putting these addresses into the 2 least * significant bytes of the supported 5-byte addresses, while setting the other * 3 bytes to 0xe7. * * For out custom link layer, we define our own proprietary link layer format * (all fields are in host byte order (little endian)): * * byte0 | byte1 - byte2 | byte3 - byte4 | byte5 | byte7 - byteN * ------ | ------------- | ------------- | ----- | ------------- * length | src_addr | dst_addr | proto | payload... * * With: * - length: length of the packet, including the header -> payload len + 6 * - src_addr: 16-bit source address * - dst_addr: 16-bit destination address * - proto: type of data transferred (similar to an Ethertype field) * * SUMMARY: * This driver / link layer supports: * - 16-bit addressing (16-bit) * -> extract default address from CPU ID * - broadcast (broadcast address is ff:ff) * - channels from 0 to 31 [2400MHz to 2524MHz, 4MHz per channel] * - setting of TX power [+4dBm to -20dBm, in ~4dBm steps] * - 8-bit packet type/proto field (to be used as seen fit) * - setting device state (RX, SLEEP) * * But so far no support for: * - link layer ACKs * - retransmissions * * @todo So far the driver uses only a single RX buffer that is locked * until the data was read/discarded. This can potentially lead to * a lot of packet loss -> using more than one buffer would help * here... * * @{ * * @file * @brief Interface definition for the nrfmin NRF51822 radio driver * * @author Hauke Petersen */ #ifndef NRFMIN_H_ #define NRFMIN_H_ #include "net/netdev2.h" #ifdef __cplusplus extern "C" { #endif /** * @brief nrfmin channel configuration * @{ */ #define NRFMIN_CHAN_MIN (0U) #define NRFMIN_CHAN_DEFAULT (0U) /* 2400MHz */ #define NRFMIN_CHAN_MAX (32) /** @} */ /** * @brief Default transmission power used */ #define NRFMIN_TXPOWER_DEFAULT (0) /* 0dBm */ /** * @brief Export the default nrfmin broadcast address */ #define NRFMIN_ADDR_BCAST (0xffff) /** * @brief Default maximum payload length (must be <= 250) */ #ifndef NRFMIN_PAYLOAD_MAX #define NRFMIN_PAYLOAD_MAX (200U) #endif /** * @brief Export some information on header and packet lengths * @{ */ #define NRFMIN_HDR_LEN (sizeof(nrfmin_hdr_t)) #define NRFMIN_PKT_MAX (NRFMIN_HDR_LEN + NRFMIN_PAYLOAD_MAX) /** @} */ /** * @brief Header format used for our custom nrfmin link layer */ typedef struct __attribute__((packed)) { uint8_t len; /**< packet length, including this header */ uint16_t src_addr; /**< source address of the packet */ uint16_t dst_addr; /**< destination address */ uint8_t proto; /**< protocol of payload */ } nrfmin_hdr_t; /** * @brief In-memory structure of a nrfmin radio packet */ typedef union { struct __attribute__((packed)) { nrfmin_hdr_t hdr; /**< the nrfmin header */ uint8_t payload[NRFMIN_PAYLOAD_MAX]; /**< actual payload */ } pkt; /**< typed packet access */ uint8_t raw[NRFMIN_PKT_MAX]; /**< raw packet access */ } nrfmin_pkt_t; /** * @brief Export the netdev2 device descriptor */ extern netdev2_t nrfmin_dev; /** * @brief Reference to the netdev driver interface */ extern const netdev2_driver_t nrfmin_netdev; /** * @brief Setup the device driver's data structures */ void nrfmin_setup(void); /** * @brief Get the currently active address * @return the 16-bit node address */ uint16_t nrfmin_get_addr(void); /** * @brief Set the 16-bit radio address * * @param[in] addr address to set */ void nrfmin_set_addr(uint16_t addr); /** * @brief Get a pseudo 64-bit long address (needed by IPv6 and 6LoWPAN) * * As we do not support 64-bit addresses, we just make one up, for this we * simply return 4 times concatenated the 16-bit address. * * @param[out] addr 64-bit pseudo long address, as array of 4 * 16-bit */ void nrfmin_get_pseudo_long_addr(uint16_t *addr); /** * @brief Get the IID build from the 16-bit node address * * @param[out] iid the 64-bit IID, as array of 4 * 16-bit */ void nrfmin_get_iid(uint16_t *iid); /** * @brief Get the current channel * * @return currently active channel */ uint16_t nrfmin_get_channel(void); /** * @brief Set the active channel * * @param[in] chan targeted channel [0-31] * * @return sizeof(uint16_t) on success * @return -EOVERFLOW if channel is not applicable */ int nrfmin_set_channel(uint16_t chan); /** * @brief Get the current radio state * * @return state the radio is currently in */ netopt_state_t nrfmin_get_state(void); /** * @brief Put the device into the given state * * @param[in] val target state * * @return sizeof(netopt_state_t) on success * @return -ENOTSUP if target state is not applicable */ int nrfmin_set_state(netopt_state_t val); /** * @brief Get the current transmit power * * @return transmission power in [dBm] */ int16_t nrfmin_get_txpower(void); /** * @brief Set the used transmission power * * @param[in] power targeted power, in [dBm] */ void nrfmin_set_txpower(int16_t power); #ifdef __cplusplus } #endif #endif /* NRFMIN_H_ */ /** @} */