/* * Copyright (C) 2015 Freie Universität Berlin * 2015 Kaspar Schleiser * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @defgroup net_netopt Configuration options for network APIs * @ingroup net * @brief List of available configuration options for the * @ref net_gnrc_netdev and the @ref net_gnrc_netapi * @{ * * @file * @brief Definition of global configuration options * * @author Hauke Petersen * @author Oliver Hahm * @author Kaspar Schleiser */ #ifndef NET_NETOPT_H #define NET_NETOPT_H #ifdef __cplusplus extern "C" { #endif /** * @brief Global list of configuration options available throughout the * network stack, e.g. by netdev and netapi */ typedef enum { NETOPT_CHANNEL, /**< get/set channel as uint16_t in host * byte order */ NETOPT_IS_CHANNEL_CLR, /**< check if channel is clear */ NETOPT_ADDRESS, /**< get/set address in host byte order */ /** * @brief get/set long address in host byte order * * Examples for this include the EUI-64 in IEEE 802.15.4 */ NETOPT_ADDRESS_LONG, NETOPT_ADDR_LEN, /**< get the default address length a * network device expects as uint16_t in * host byte order */ NETOPT_SRC_LEN, /**< get/set the address length to choose * for the network device's source address * as uint16_t in host byte order */ /** * @brief get/set the network ID as uint16_t in host byte order * * Examples for this include the PAN ID in IEEE 802.15.4 */ NETOPT_NID, /** * @brief get/set hop limit as uint8_t */ NETOPT_HOP_LIMIT, /** * @brief get the IPv6 interface identifier of a network interface as * eui64_t. * * @see * RFC 4291, section 2.5.1 * * * The generation of the interface identifier is dependent on the link-layer. * Please refer to the appropriate IPv6 over `` specification for * further implementation details (such as * RFC 2464 or * RFC 4944). */ NETOPT_IPV6_IID, /** * @brief get IPv6 addresses of an interface as array of @ref ipv6_addr_t * or add an IPv6 address as @ref ipv6_addr_t to an interface * * When adding an IPv6 address to a GNRC interface using * @ref GNRC_NETAPI_MSG_TYPE_SET, the gnrc_netapi_opt_t::context field can * be used to pass the prefix length (8 MSB) and some flags (8 LSB) * according to @ref net_gnrc_netif_ipv6_addrs_flags. The address is however always * considered to be manually added. * When getting the option you can pass an array of @ref ipv6_addr_t of any * length greater than 0 to the getter. The array will be filled up to to * its maximum and the remaining addresses on the interface will be ignored */ NETOPT_IPV6_ADDR, /** * @brief Removes an IPv6 address as @ref ipv6_addr_t from an interface */ NETOPT_IPV6_ADDR_REMOVE, /** * @brief get the flags to the addresses returned by @ref NETOPT_IPV6_ADDR * as array of uint8_t * * The information contained in the array is very specific to the * interface's API. For GNRC e.g. the values are according to * @ref net_gnrc_netif_ipv6_addrs_flags. */ NETOPT_IPV6_ADDR_FLAGS, /** * @brief get IPv6 multicast groups of an interface as array of * @ref ipv6_addr_t or join an IPv6 multicast group as * @ref ipv6_addr_t on an interface * * When adding an IPv6 address to a GNRC interface using * @ref GNRC_NETAPI_MSG_TYPE_SET, the gnrc_netapi_opt_t::context field can * be used to pass the prefix length (8 MSB) and some flags (8 LSB) * according to @ref net_gnrc_netif_ipv6_addrs_flags. The address is however always * considered to be manually added. * When getting the option you can pass an array of @ref ipv6_addr_t of any * length greater than 0 to the getter. The array will be filled up to to * its maximum and the remaining addresses on the interface will be ignored */ NETOPT_IPV6_GROUP, /** * @brief Leaves an IPv6 multicast group as @ref ipv6_addr_t on an * interface */ NETOPT_IPV6_GROUP_LEAVE, NETOPT_IPV6_FORWARDING, /**< en/disable IPv6 forwarding or read the * current state */ NETOPT_IPV6_SND_RTR_ADV, /**< en/disable sending of IPv6 router * advertisements or read the current state */ NETOPT_TX_POWER, /**< get/set the output power for radio * devices in dBm as int16_t in host byte * order */ NETOPT_MAX_PACKET_SIZE, /**< get/set the maximum packet size a * network module can handle as uint16_t * in host byte order */ /** * @brief en/disable preloading or read the current state. * * Preload using gnrc_netdev_driver_t::send_data() or gnrc_netapi_send() * respectively, send setting state to @ref NETOPT_STATE_TX */ NETOPT_PRELOADING, NETOPT_PROMISCUOUSMODE, /**< en/disable promiscuous mode or read * the current state */ NETOPT_AUTOACK, /**< en/disable link layer auto ACKs or read * the current state */ NETOPT_ACK_REQ, /**< en/disable acknowledgement requests or * read the current state */ NETOPT_RETRANS, /**< get/set the maximum number of * retransmissions. */ NETOPT_PROTO, /**< get/set the protocol for the layer * as type gnrc_nettype_t. */ NETOPT_STATE, /**< get/set the state of network devices as * type netopt_state_t */ NETOPT_RAWMODE, /**< en/disable the pre-processing of data * in a network device driver as type * gnrc_nettype_t */ /** * @brief en/disable the interrupt at reception start. * * It is mostly triggered after the preamble is correctly received * * @note not all transceivers may support this interrupt */ NETOPT_RX_START_IRQ, /** * @brief en/disable the interrupt after packet reception. * * This interrupt is triggered after a complete packet is received. * * @note in case a transceiver does not support this interrupt, the event * may be triggered by the driver */ NETOPT_RX_END_IRQ, /** * @brief en/disable the interrupt right in the beginning of transmission. * * This interrupt is triggered when the transceiver starts to send out the * packet. * * @note in case a transceiver does not support this interrupt, the event * may be triggered by the driver */ NETOPT_TX_START_IRQ, /** * @brief en/disable the interrupt after packet transmission. * * This interrupt is triggered when the full packet is transmitted. * * @note not all transceivers may support this interrupt */ NETOPT_TX_END_IRQ, /** * @brief Check automatically before sending if the channel is clear. * * This may be a hardware feature of the given transceiver, or might be * otherwise implemented in software. If the device supports CSMA this * option will enable CSMA with a certain set of parameters to emulate the * desired behaviour. * * @note Be sure not to set NETOPT_CSMA simultaneously. * * TODO: How to get feedback? */ NETOPT_AUTOCCA, /** * @brief en/disable CSMA/CA support * * If the device supports CSMA in hardware, this option enables it with * default parameters. For further configuration refer to the other * NETOPT_CSMA_* options. */ NETOPT_CSMA, /** * @brief get/set the maximum number of CSMA retries * * (uint8_t) * The maximum number of backoffs the CSMA-CA algorithm will attempt before * declaring a channel access failure. Named macMaxCsmaBackoffs in * IEEE Std 802.15.4-2015. * * 802.15.4 default: 4 */ NETOPT_CSMA_RETRIES, /** * @brief get/set the maximum backoff exponent for the CSMA-CA algorithm * * (uint8_t) Named macMaxBE in IEEE Std 802.15.4-2015. * * 802.15.4 default: 5 */ NETOPT_CSMA_MAXBE, /** * @brief get/set the minimum backoff exponent for the CSMA-CA algorithm * * (uint8_t) Named macMinBE in IEEE Std 802.15.4-2015. * * 802.15.4 default: 3 */ NETOPT_CSMA_MINBE, /** * @brief en/disable blocking of radio sleep when running a duty cycling MAC layer * * (netopt_enable_t) Enabling this option tells the MAC layer to never put * the radio to sleep. Useful in gateways and routers not running on * batteries to improve responsiveness and allow battery powered nodes on * the same network to sleep more often. */ NETOPT_MAC_NO_SLEEP, /** * @brief read-only check for a wired interface. * * If the interface is wireless this function will return -ENOTSUP, a * positive value otherwise. * * @note Setting this option will always return -ENOTSUP. */ NETOPT_IS_WIRED, /** * @brief get a device's "type", e.g., ethernet, 802.15.4, ... */ NETOPT_DEVICE_TYPE, /** * @brief get/set the channel page as defined by IEEE 802.15.4 */ NETOPT_CHANNEL_PAGE, /** * @brief get/set the CCA threshold for the radio transceiver * * This is the value, in dBm, that the radio transceiver uses to decide * if the channel is clear or not (CCA). If the current signal strength * (RSSI/ED) is stronger than this CCA threshold value, the transceiver * usually considers that the radio medium is busy. Otherwise, i.e. * if RSSI/ED value is less than the CCA threshold value, the radio * medium is supposed to be free (the possibly received weak signal * is considered to be background, meaningless noise). * * Most transceivers allow to set this CCA threshold value. * Some research work has proven that dynamically adapting it * to network environment can improve QoS, especially in WSN. */ NETOPT_CCA_THRESHOLD, /** * @brief CCA mode for the radio transceiver * * Get/set the CCA mode as uint8_t * corresponding to the respective PHY standard. * - IEEE 802.15.4: @ref netdev_ieee802154_cca_mode_t */ NETOPT_CCA_MODE, /** * @brief get statistics about sent and received packets and data of the device or protocol * * Expects a pointer to a @ref netstats_t struct that will be pointed to * the corresponding @ref netstats_t of the module. */ NETOPT_STATS, /** * @brief en/disable encryption. */ NETOPT_ENCRYPTION, /**< en/disable encryption */ NETOPT_ENCRYPTION_KEY, /**< set encryption key */ /** * @brief Test mode for the radio, e.g. for CE or FCC certification * * Get/set the test mode as type @ref netopt_rf_testmode_t or as uint8_t * if the radio supports other vendor specific test modes. * * @note Setting this option should always return -ENOTSUP, * unless it was explicitly allowed at build time, * therefore it should be secured with an additional macro in the device driver. * For development and certification purposes only, this test modes can disturb * normal radio communications and exceed the limits, established by * the regulatory authority. * */ NETOPT_RF_TESTMODE, /** * @brief add an address to a link layer filter list * * 'Getting' this option from a device will return a pointer of type * @ref l2filter_t to the first entry of a filter list. * When 'Setting' this option a pointer to an link layer address as well as * the length of the address are expected as parameters. */ NETOPT_L2FILTER, /** * @brief remove an address from a link layer filter list * * 'Getting' this value always returns -ENOTSUP. * When 'Setting' this option a pointer to an link layer address as well as * the length of the address are expected as parameters. 'Setting' this * option will lead to the given address being removed from the filer list. */ NETOPT_L2FILTER_RM, /** * @brief Energy level during the last performed CCA or RX frame * * Get the last ED level available as an int8_t. The source of the * measurement is unspecified and may come from the latest CCA * measurement (CCA mode 1), or from the last received frame. */ NETOPT_LAST_ED_LEVEL, /** * @brief Get/Set preamble length as uint16_t in host byte order. */ NETOPT_PREAMBLE_LENGTH, /** * @brief Enable/disable integrity check (e.g CRC). */ NETOPT_INTEGRITY_CHECK, /** * @brief Enable/disable channel hopping. */ NETOPT_CHANNEL_HOP, /** * @brief Get/Set channel hopping period as uint8_t. */ NETOPT_CHANNEL_HOP_PERIOD, /** * @brief Enable/disable single packet reception. * * If enabled, RX is turned off upon reception of a packet */ NETOPT_SINGLE_RECEIVE, /** * @brief Get/Set the reception timeout of a packet. * * Values are retrieved/passed as uint32_t in host byte order. */ NETOPT_RX_TIMEOUT, /** * @brief Get/Set the transmission timeout of a packet. * * Values are retrieved/passed as uint32_t in host byte order. */ NETOPT_TX_TIMEOUT, /** * @brief Get/Set the radio modem type as uint8_t. */ NETOPT_DEVICE_MODE, /** * @brief Get/Set the radio modulation bandwidth as uint8_t. */ NETOPT_BANDWIDTH, /** * @brief Get/Set the radio spreading factor as uint8_t. */ NETOPT_SPREADING_FACTOR, /** * @brief Get/Set the radio coding rate as uint8_t. */ NETOPT_CODING_RATE, /** * @brief Enable/disable fixed header mode. */ NETOPT_FIXED_HEADER, /** * @brief Enable/disable IQ inverted. */ NETOPT_IQ_INVERT, NETOPT_6LO_IPHC, /**< en/disable header compression according to * [RFC 6282](https://tools.ietf.org/html/rfc6282) * or read the current state */ /** * @brief Get retry amount from missing ACKs of the last transmission * * This retrieves the number of retries needed for the last transmissions. * Only retransmissions due to missing ACK packets are considered. * Retries due to CCA failures are not counted. */ NETOPT_TX_RETRIES_NEEDED, /* add more options if needed */ /** * @brief maximum number of options defined here. * * @note Interfaces are not meant to respond to that. */ NETOPT_NUMOF, } netopt_t; /** * @brief Binary parameter for enabling and disabling options */ typedef enum { NETOPT_DISABLE = 0, /**< disable a given option */ NETOPT_ENABLE = 1, /**< enable a given option */ } netopt_enable_t; /** * @brief Option parameter to be used with @ref NETOPT_STATE to set or get * the state of a network device or protocol implementation */ typedef enum { NETOPT_STATE_OFF = 0, /**< powered off */ NETOPT_STATE_SLEEP, /**< sleep mode */ NETOPT_STATE_IDLE, /**< idle mode, * the device listens to receive packets */ NETOPT_STATE_RX, /**< receive mode, * the device currently receives a packet */ NETOPT_STATE_TX, /**< transmit mode, * set: triggers transmission of a preloaded packet * (see @ref NETOPT_PRELOADING*). The resulting * state of the network device is @ref NETOPT_STATE_IDLE * get: the network device is in the process of * transmitting a packet */ NETOPT_STATE_RESET, /**< triggers a hardware reset. The resulting * state of the network device is @ref NETOPT_STATE_IDLE */ NETOPT_STATE_STANDBY, /**< standby mode. The devices is awake but * not listening to packets. */ /* add other states if needed */ } netopt_state_t; /** * @brief Option parameter to be used with @ref NETOPT_RF_TESTMODE */ typedef enum { NETOPT_RF_TESTMODE_IDLE = 0, /**< idle mode, radio off */ NETOPT_RF_TESTMODE_CRX, /**< continuous rx mode */ NETOPT_RF_TESTMODE_CTX_CW, /**< carrier wave continuous tx mode */ NETOPT_RF_TESTMODE_CTX_PRBS9, /**< PRBS9 continuous tx mode */ } netopt_rf_testmode_t; /** * @brief Get a string ptr corresponding to opt, for debugging * * @param[in] opt The option to get a string representation for * * @return ptr to string representation for given option or "unknown" */ const char *netopt2str(netopt_t opt); #ifdef __cplusplus } #endif #endif /* NET_NETOPT_H */ /** @} */