/******************************************************************************* Copyright (c) 2006-2015 Cadence Design Systems Inc. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. -------------------------------------------------------------------------------- XTENSA VECTORS AND LOW LEVEL HANDLERS FOR AN RTOS Xtensa low level exception and interrupt vectors and handlers for an RTOS. Interrupt handlers and user exception handlers support interaction with the RTOS by calling XT_RTOS_INT_ENTER and XT_RTOS_INT_EXIT before and after user's specific interrupt handlers. These macros are defined in xtensa_.h to call suitable functions in a specific RTOS. Users can install application-specific interrupt handlers for low and medium level interrupts, by calling xt_set_interrupt_handler(). These handlers can be written in C, and must obey C calling convention. The handler table is indexed by the interrupt number. Each handler may be provided with an argument. Note that the system timer interrupt is handled specially, and is dispatched to the RTOS-specific handler. This timer cannot be hooked by application code. Optional hooks are also provided to install a handler per level at run-time, made available by compiling this source file with '-DXT_INTEXC_HOOKS' (useful for automated testing). !! This file is a template that usually needs to be modified to handle !! !! application specific interrupts. Search USER_EDIT for helpful comments !! !! on where to insert handlers and how to write them. !! Users can also install application-specific exception handlers in the same way, by calling xt_set_exception_handler(). One handler slot is provided for each exception type. Note that some exceptions are handled by the porting layer itself, and cannot be taken over by application code in this manner. These are the alloca, syscall, and coprocessor exceptions. The exception handlers can be written in C, and must follow C calling convention. Each handler is passed a pointer to an exception frame as its single argument. The exception frame is created on the stack, and holds the saved context of the thread that took the exception. If the handler returns, the context will be restored and the instruction that caused the exception will be retried. If the handler makes any changes to the saved state in the exception frame, the changes will be applied when restoring the context. Because Xtensa is a configurable architecture, this port supports all user generated configurations (except restrictions stated in the release notes). This is accomplished by conditional compilation using macros and functions defined in the Xtensa HAL (hardware adaptation layer) for your configuration. Only the relevant parts of this file will be included in your RTOS build. For example, this file provides interrupt vector templates for all types and all priority levels, but only the ones in your configuration are built. NOTES on the use of 'call0' for long jumps instead of 'j': 1. This file should be assembled with the -mlongcalls option to xt-xcc. 2. The -mlongcalls compiler option causes 'call0 dest' to be expanded to a sequence 'l32r a0, dest' 'callx0 a0' which works regardless of the distance from the call to the destination. The linker then relaxes it back to 'call0 dest' if it determines that dest is within range. This allows more flexibility in locating code without the performance overhead of the 'l32r' literal data load in cases where the destination is in range of 'call0'. There is an additional benefit in that 'call0' has a longer range than 'j' due to the target being word-aligned, so the 'l32r' sequence is less likely needed. 3. The use of 'call0' with -mlongcalls requires that register a0 not be live at the time of the call, which is always the case for a function call but needs to be ensured if 'call0' is used as a jump in lieu of 'j'. 4. This use of 'call0' is independent of the C function call ABI. *******************************************************************************/ #include "xtensa_context.h" #include "xtensa_rtos.h" /* Enable stack backtrace across exception/interrupt - see below */ #define XT_DEBUG_BACKTRACE 1 /* -------------------------------------------------------------------------------- Defines used to access _xtos_interrupt_table. -------------------------------------------------------------------------------- */ #define XIE_HANDLER 0 #define XIE_ARG 4 #define XIE_SIZE 8 /* -------------------------------------------------------------------------------- Macro extract_msb - return the input with only the highest bit set. Input : "ain" - Input value, clobbered. Output : "aout" - Output value, has only one bit set, MSB of "ain". The two arguments must be different AR registers. -------------------------------------------------------------------------------- */ .macro extract_msb aout ain 1: addi \aout, \ain, -1 /* aout = ain - 1 */ and \ain, \ain, \aout /* ain = ain & aout */ bnez \ain, 1b /* repeat until ain == 0 */ addi \aout, \aout, 1 /* return aout + 1 */ .endm /* -------------------------------------------------------------------------------- Macro dispatch_c_isr - dispatch interrupts to user ISRs. This will dispatch to user handlers (if any) that are registered in the XTOS dispatch table (_xtos_interrupt_table). These handlers would have been registered by calling _xtos_set_interrupt_handler(). There is one exception - the timer interrupt used by the OS will not be dispatched to a user handler - this must be handled by the caller of this macro. Level triggered and software interrupts are automatically deasserted by this code. ASSUMPTIONS: -- PS.INTLEVEL is set to "level" at entry -- PS.EXCM = 0, C calling enabled NOTE: For CALL0 ABI, a12-a15 have not yet been saved. NOTE: This macro will use registers a0 and a2-a6. The arguments are: level -- interrupt level mask -- interrupt bitmask for this level -------------------------------------------------------------------------------- */ .macro dispatch_c_isr level mask /* Get mask of pending, enabled interrupts at this level into a2. */ .L_xt_user_int_&level&: rsr a2, INTENABLE rsr a3, INTERRUPT movi a4, \mask and a2, a2, a3 and a2, a2, a4 beqz a2, 9f /* nothing to do */ /* This bit of code provides a nice debug backtrace in the debugger. It does take a few more instructions, so undef XT_DEBUG_BACKTRACE if you want to save the cycles. */ #if XT_DEBUG_BACKTRACE #ifndef __XTENSA_CALL0_ABI__ rsr a0, EPC_1 + \level - 1 /* return address */ movi a4, 0xC0000000 /* constant with top 2 bits set (call size) */ or a0, a0, a4 /* set top 2 bits */ addx2 a0, a4, a0 /* clear top bit -- simulating call4 size */ #endif #endif #ifdef XT_INTEXC_HOOKS /* Call interrupt hook if present to (pre)handle interrupts. */ movi a4, _xt_intexc_hooks l32i a4, a4, \level << 2 beqz a4, 2f #ifdef __XTENSA_CALL0_ABI__ callx0 a4 beqz a2, 9f #else mov a6, a2 callx4 a4 beqz a6, 9f mov a2, a6 #endif 2: #endif /* Now look up in the dispatch table and call user ISR if any. */ /* If multiple bits are set then MSB has highest priority. */ extract_msb a4, a2 /* a4 = MSB of a2, a2 trashed */ #ifdef XT_USE_SWPRI /* Enable all interrupts at this level that are numerically higher than the one we just selected, since they are treated as higher priority. */ movi a3, \mask /* a3 = all interrupts at this level */ add a2, a4, a4 /* a2 = a4 << 1 */ addi a2, a2, -1 /* a2 = mask of 1's <= a4 bit */ and a2, a2, a3 /* a2 = mask of all bits <= a4 at this level */ movi a3, _xt_intdata l32i a6, a3, 4 /* a6 = _xt_vpri_mask */ neg a2, a2 addi a2, a2, -1 /* a2 = mask to apply */ and a5, a6, a2 /* mask off all bits <= a4 bit */ s32i a5, a3, 4 /* update _xt_vpri_mask */ rsr a3, INTENABLE and a3, a3, a2 /* mask off all bits <= a4 bit */ wsr a3, INTENABLE rsil a3, \level - 1 /* lower interrupt level by 1 */ #endif movi a3, XT_TIMER_INTEN /* a3 = timer interrupt bit */ wsr a4, INTCLEAR /* clear sw or edge-triggered interrupt */ #ifndef RIOT_VERSION /* we use it as hardware timer in RIOT OS */ beq a3, a4, 7f /* if timer interrupt then skip table */ #endif find_ms_setbit a3, a4, a3, 0 /* a3 = interrupt number */ movi a4, _xt_interrupt_table addx8 a3, a3, a4 /* a3 = address of interrupt table entry */ l32i a4, a3, XIE_HANDLER /* a4 = handler address */ #ifdef __XTENSA_CALL0_ABI__ mov a12, a6 /* save in callee-saved reg */ l32i a2, a3, XIE_ARG /* a2 = handler arg */ callx0 a4 /* call handler */ mov a2, a12 #else mov a2, a6 /* save in windowed reg */ l32i a6, a3, XIE_ARG /* a6 = handler arg */ callx4 a4 /* call handler */ #endif #ifdef XT_USE_SWPRI j 8f #else j .L_xt_user_int_&level& /* check for more interrupts */ #endif 7: .ifeq XT_TIMER_INTPRI - \level .L_xt_user_int_timer_&level&: /* Interrupt handler for the RTOS tick timer if at this level. We'll be reading the interrupt state again after this call so no need to preserve any registers except a6 (vpri_mask). */ #ifdef __XTENSA_CALL0_ABI__ mov a12, a6 call0 XT_RTOS_TIMER_INT mov a2, a12 #else mov a2, a6 call4 XT_RTOS_TIMER_INT #endif .endif #ifdef XT_USE_SWPRI j 8f #else j .L_xt_user_int_&level& /* check for more interrupts */ #endif #ifdef XT_USE_SWPRI 8: /* Restore old value of _xt_vpri_mask from a2. Also update INTENABLE from virtual _xt_intenable which _could_ have changed during interrupt processing. */ movi a3, _xt_intdata l32i a4, a3, 0 /* a4 = _xt_intenable */ s32i a2, a3, 4 /* update _xt_vpri_mask */ and a4, a4, a2 /* a4 = masked intenable */ wsr a4, INTENABLE /* update INTENABLE */ #endif 9: /* done */ .endm /* -------------------------------------------------------------------------------- Panic handler. Should be reached by call0 (preferable) or jump only. If call0, a0 says where from. If on simulator, display panic message and abort, else loop indefinitely. -------------------------------------------------------------------------------- */ .text .literal_position .global _xt_panic .type _xt_panic,@function .align 4 _xt_panic: #ifdef XT_SIMULATOR addi a4, a0, -3 /* point to call0 */ movi a3, _xt_panic_message movi a2, SYS_log_msg simcall movi a2, SYS_gdb_abort simcall #else #ifdef RIOT_VERSION addi a2, a0, -3 call0 _panic_handler #endif rsil a2, XCHAL_EXCM_LEVEL /* disable all low & med ints */ 1: j 1b /* loop infinitely */ #endif .section .rodata, "a" .align 4 _xt_panic_message: .string "\n*** _xt_panic() was called from 0x%08x or jumped to. ***\n" /* -------------------------------------------------------------------------------- Hooks to dynamically install handlers for exceptions and interrupts. Allows automated regression frameworks to install handlers per test. Consists of an array of function pointers indexed by interrupt level, with index 0 containing the entry for user exceptions. Initialized with all 0s, meaning no handler is installed at each level. See comment in xtensa_rtos.h for more details. -------------------------------------------------------------------------------- */ #ifdef XT_INTEXC_HOOKS .data .global _xt_intexc_hooks .type _xt_intexc_hooks,@object .align 4 _xt_intexc_hooks: .fill XT_INTEXC_HOOK_NUM, 4, 0 #endif /* -------------------------------------------------------------------------------- EXCEPTION AND LEVEL 1 INTERRUPT VECTORS AND LOW LEVEL HANDLERS (except window exception vectors). Each vector goes at a predetermined location according to the Xtensa hardware configuration, which is ensured by its placement in a special section known to the Xtensa linker support package (LSP). It performs the minimum necessary before jumping to the handler in the .text section. The corresponding handler goes in the normal .text section. It sets up the appropriate stack frame, saves a few vector-specific registers and calls XT_RTOS_INT_ENTER to save the rest of the interrupted context and enter the RTOS, then sets up a C environment. It then calls the user's interrupt handler code (which may be coded in C) and finally calls XT_RTOS_INT_EXIT to transfer control to the RTOS for scheduling. While XT_RTOS_INT_EXIT does not return directly to the interruptee, eventually the RTOS scheduler will want to dispatch the interrupted task or handler. The scheduler will return to the exit point that was saved in the interrupt stack frame at XT_STK_EXIT. -------------------------------------------------------------------------------- */ /* -------------------------------------------------------------------------------- Debug Exception. -------------------------------------------------------------------------------- */ #if XCHAL_HAVE_DEBUG .begin literal_prefix .DebugExceptionVector .section .DebugExceptionVector.text, "ax" .global _DebugExceptionVector .literal_position .align 4 _DebugExceptionVector: /* * Please note that this code will be overwritten with * * xsr a2, excsave2 * jx a2 * * if module esp_gdbstub is used. */ #ifdef XT_SIMULATOR /* In the simulator, let the debugger (if any) handle the debug exception, or simply stop the simulation: */ wsr a2, EXCSAVE+XCHAL_DEBUGLEVEL /* save a2 where sim expects it */ movi a2, SYS_gdb_enter_sktloop simcall /* have ISS handle debug exc. */ #elif 0 /* change condition to 1 to use the HAL minimal debug handler */ wsr a3, EXCSAVE+XCHAL_DEBUGLEVEL movi a3, xthal_debugexc_defhndlr_nw /* use default debug handler */ jx a3 #else /* XT_SIMULATOR */ wsr a0, EXCSAVE+XCHAL_DEBUGLEVEL /* save original a0 somewhere */ call0 _xt_panic /* does not return */ rfi XCHAL_DEBUGLEVEL /* make a0 point here not later */ #endif /* XT_SIMULATOR */ .end literal_prefix #endif /* XCHAL_HAVE_DEBUG */ /* -------------------------------------------------------------------------------- Double Exception. Double exceptions are not a normal occurrence. They indicate a bug of some kind. -------------------------------------------------------------------------------- */ #ifdef XCHAL_DOUBLEEXC_VECTOR_VADDR .begin literal_prefix .DoubleExceptionVector .section .DoubleExceptionVector.text, "ax" .global _DoubleExceptionVector .literal_position .align 4 _DoubleExceptionVector: #if XCHAL_HAVE_DEBUG break 1, 4 /* unhandled double exception */ #endif call0 _xt_panic /* does not return */ rfde /* make a0 point here not later */ .end literal_prefix #endif /* XCHAL_DOUBLEEXC_VECTOR_VADDR */ /* -------------------------------------------------------------------------------- Kernel Exception (including Level 1 Interrupt from kernel mode). -------------------------------------------------------------------------------- */ .begin literal_prefix .KernelExceptionVector .section .KernelExceptionVector.text, "ax" .global _KernelExceptionVector .literal_position .align 4 _KernelExceptionVector: wsr a0, EXCSAVE_1 /* preserve a0 */ call0 _xt_kernel_exc /* kernel exception handler */ /* never returns here - call0 is used as a jump (see note at top) */ .end literal_prefix .text .literal_position .align 4 _xt_kernel_exc: #if XCHAL_HAVE_DEBUG break 1, 0 /* unhandled kernel exception */ #endif call0 _xt_panic /* does not return */ rfe /* make a0 point here not there */ /* -------------------------------------------------------------------------------- User Exception (including Level 1 Interrupt from user mode). -------------------------------------------------------------------------------- */ .begin literal_prefix .UserExceptionVector .section .UserExceptionVector.text, "ax" .global _UserExceptionVector .type _UserExceptionVector,@function .literal_position .align 4 _UserExceptionVector: #ifdef MCU_ESP8266 wsr a0, EXCSAVE_1 /* preserve a0 */ j _UserExceptionTrampoline /* jump to handler trampoline */ #else wsr a0, EXCSAVE_1 /* preserve a0 */ call0 _xt_user_exc /* user exception handler */ /* never returns here - call0 is used as a jump (see note at top) */ #endif .end literal_prefix #ifdef MCU_ESP8266 /*************************** LoadStoreError Handler BEGIN ********************/ /* * PLEASE NOTE: The code between "LoadStoreError Handler BEGIN" and * "LoadStoreError Handler END" markers was extracted from esp-open-rtos. It is * under the following copyright: * * Part of esp-open-rtos * Original vector contents Copyright (C) 2014-2015 Espressif Systems * Additions Copyright (C) Superhouse Automation Pty Ltd and Angus Gratton * BSD Licensed as described in the file LICENSE * * Usually, the access to the IROM (flash) memory requires 32-bit word aligned * reads. Attempts to access data in the IROM (flash) memory less than 32 bits * in size triggers a LoadStoreError exception. Therefore, it is not possible to * place .rodata sections in IROM (flash). Rather, .rodata sections have to * be placed in RAM. With the exception handler from esp-open-rtos it becomes * possible to access data in IROM (flash) with a size of less than 32 bits * and thus to place .rodata sections in the IROM (flash). */ #define CAUSE_LOADSTORE 3 #define fatal_exception_handler _xt_user_exc /* LoadStoreError handler stack */ .section .bss .balign 16 _LoadStoreErrorHandlerStack: .word 0 # a0 .word 0 # (unused) .word 0 # a2 .word 0 # a3 .word 0 # a4 /* LoadStoreError Trampoline */ .section .UserExceptionTrampoline.text, "x" .literal_position .balign 4 _UserExceptionTrampoline: wsr a1, EXCSAVE_2 /* preserve a1 */ #ifdef MCU_ESP8266 rsr a1, exccause beqi a1, CAUSE_LOADSTORE, _LoadStoreErrorHandler #endif rsr a1, EXCSAVE_2 /* restore a1 */ call0 _xt_user_exc /* user exception handler */ /* never returns here - call0 is used as a jump (see note at top) */ /* * Xtensa "Load/Store Exception" handler: * Completes L8/L16 load instructions from Instruction address space, * for which the architecture only supports 32-bit reads. * * Called from UserExceptionVector if EXCCAUSE is LoadStoreErrorCause * * (Fast path (no branches) is for L8UI) */ .literal_position .balign 4 .type LoadStoreErrorHandler, @function _LoadStoreErrorHandler: rsr a1, EXCSAVE_2 /* restore a1 */ wsr a1, EXCSAVE_1 /* save it to excsave1 */ /* Registers are saved in the address corresponding to their register * number times 4. This allows a quick and easy mapping later on when * needing to store the value to a particular register number. */ movi sp, _LoadStoreErrorHandlerStack s32i a0, sp, 0 s32i a2, sp, 0x08 s32i a3, sp, 0x0c s32i a4, sp, 0x10 rsr a0, sar # Save SAR in a0 to restore later /* Examine the opcode which generated the exception */ /* Note: Instructions are in this order to avoid pipeline stalls. */ rsr a2, epc1 movi a3, ~3 ssa8l a2 # sar is now correct shift for aligned read and a2, a2, a3 # a2 now 4-byte aligned address of instruction l32i a4, a2, 0 l32i a2, a2, 4 movi a3, 0x00700F # opcode mask for l8ui/l16si/l16ui src a2, a2, a4 # a2 now instruction that failed and a3, a2, a3 # a3 is masked instruction bnei a3, 0x000002, .LSE_check_l16 /* Note: At this point, opcode could technically be one of two things: * xx0xx2 (L8UI) * xx8xx2 (Reserved (invalid) opcode) * It is assumed that we'll never get to this point from an illegal * opcode, so we don't bother to check for that case and presume this * is always an L8UI. */ movi a4, ~3 rsr a3, excvaddr # read faulting address and a4, a3, a4 # a4 now word aligned read address l32i a4, a4, 0 # perform the actual read ssa8l a3 # sar is now shift to extract a3's byte srl a3, a4 # shift right correct distance extui a4, a3, 0, 8 # mask off bits we need for an l8 .LSE_post_fetch: /* We jump back here after either the L8UI or the L16*I routines do the * necessary work to read the value from memory. * At this point, a2 holds the faulting instruction and a4 holds the * correctly read value. * Restore original SAR value (saved in a0) and update EPC so we'll * return back to the instruction following the one we just emulated */ /* Note: Instructions are in this order to avoid pipeline stalls */ rsr a3, epc1 wsr a0, sar addi a3, a3, 0x3 wsr a3, epc1 /* Stupid opcode tricks: The jumptable we use later on needs 16 bytes * per entry (so we can avoid a second jump by just doing a RFE inside * each entry). Unfortunately, however, Xtensa doesn't have an addx16 * operation to make that easy for us. Luckily, all of the faulting * opcodes we're processing are guaranteed to have bit 3 be zero, which * means if we just shift the register bits of the opcode down by 3 * instead of 4, we will get the register number multiplied by 2. This * combined with an addx8 will give us an effective addx16 without * needing any extra shift operations. */ extui a2, a2, 3, 5 # a2 is now destination register 0-15 times 2 bgei a2, 10, .LSE_assign_reg # a5..a15 use jumptable beqi a2, 2, .LSE_assign_a1 # a1 uses a special routine /* We're storing into a0 or a2..a4, which are all saved in our "stack" * area. Calculate the correct address and stick the value in there, * then just do our normal restore and RFE (no jumps required, which * actually makes a0..a4 substantially faster). */ addx2 a2, a2, sp s32i a4, a2, 0 /* Restore all regs and return */ l32i a0, sp, 0 l32i a2, sp, 0x08 l32i a3, sp, 0x0c l32i a4, sp, 0x10 rsr a1, excsave1 # restore a1 saved by UserExceptionVector rfe .LSE_assign_reg: /* At this point, a2 contains the register number times 2, a4 is the * read value. */ /* Calculate the jumptable address, and restore all regs except a2 and * a4 so we have less to do after jumping. */ /* Note: Instructions are in this order to avoid pipeline stalls. */ movi a3, .LSE_jumptable_base l32i a0, sp, 0 addx8 a2, a2, a3 # a2 is now the address to jump to l32i a3, sp, 0x0c jx a2 .balign 4 .LSE_check_l16: /* At this point, a2 contains the opcode, a3 is masked opcode */ movi a4, 0x001002 # l16si or l16ui opcode after masking bne a3, a4, .LSE_wrong_opcode /* Note: At this point, the opcode could be one of two things: * xx1xx2 (L16UI) * xx9xx2 (L16SI) * Both of these we can handle. */ movi a4, ~3 rsr a3, excvaddr # read faulting address and a4, a3, a4 # a4 now word aligned read address l32i a4, a4, 0 # perform the actual read ssa8l a3 # sar is now shift to extract a3's bytes srl a3, a4 # shift right correct distance extui a4, a3, 0, 16 # mask off bits we need for an l16 bbci a2, 15, .LSE_post_fetch # Not a signed op bbci a4, 15, .LSE_post_fetch # Value does not need sign-extension movi a3, 0xFFFF0000 or a4, a3, a4 # set 32-bit sign bits j .LSE_post_fetch .LSE_wrong_opcode: /* If we got here it's not an opcode we can try to fix, so bomb out. * Restore registers so any dump the fatal exception routine produces * will have correct values */ wsr a0, sar l32i a0, sp, 0 /*l32i a2, sp, 0x08*/ l32i a3, sp, 0x0c l32i a4, sp, 0x10 rsr a1, excsave1 mov a2, a1 movi a3, 0 call0 fatal_exception_handler .balign 4 .LSE_assign_a1: /* a1 is saved in excsave1, so just update that with the value, */ wsr a4, excsave1 /* Then restore all regs and return */ l32i a0, sp, 0 l32i a2, sp, 0x08 l32i a3, sp, 0x0c l32i a4, sp, 0x10 rsr a1, excsave1 rfe .balign 4 .LSE_jumptable: /* The first 5 entries (80 bytes) of this table are unused (registers * a0..a4 are handled separately above). Rather than have a whole bunch * of wasted space, we just pretend that the table starts 80 bytes * earlier in memory. */ .set .LSE_jumptable_base, .LSE_jumptable - (16 * 5) .org .LSE_jumptable_base + (16 * 5) mov a5, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe .org .LSE_jumptable_base + (16 * 6) mov a6, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe .org .LSE_jumptable_base + (16 * 7) mov a7, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe .org .LSE_jumptable_base + (16 * 8) mov a8, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe .org .LSE_jumptable_base + (16 * 9) mov a9, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe .org .LSE_jumptable_base + (16 * 10) mov a10, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe .org .LSE_jumptable_base + (16 * 11) mov a11, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe .org .LSE_jumptable_base + (16 * 12) mov a12, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe .org .LSE_jumptable_base + (16 * 13) mov a13, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe .org .LSE_jumptable_base + (16 * 14) mov a14, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe .org .LSE_jumptable_base + (16 * 15) mov a15, a4 l32i a2, sp, 0x08 l32i a4, sp, 0x10 rsr a1, excsave1 rfe /*************************** LoadStoreError Handler END **********************/ #endif /* -------------------------------------------------------------------------------- Insert some waypoints for jumping beyond the signed 8-bit range of conditional branch instructions, so the conditional branchces to specific exception handlers are not taken in the mainline. Saves some cycles in the mainline. -------------------------------------------------------------------------------- */ .text #if XCHAL_HAVE_WINDOWED .align 4 _xt_to_alloca_exc: call0 _xt_alloca_exc /* in window vectors section */ /* never returns here - call0 is used as a jump (see note at top) */ #endif .align 4 _xt_to_syscall_exc: call0 _xt_syscall_exc /* never returns here - call0 is used as a jump (see note at top) */ #if XCHAL_CP_NUM > 0 .align 4 _xt_to_coproc_exc: call0 _xt_coproc_exc /* never returns here - call0 is used as a jump (see note at top) */ #endif /* -------------------------------------------------------------------------------- User exception handler. -------------------------------------------------------------------------------- */ .type _xt_user_exc,@function .align 4 _xt_user_exc: /* If level 1 interrupt then jump to the dispatcher */ rsr a0, EXCCAUSE beqi a0, EXCCAUSE_LEVEL1INTERRUPT, _xt_lowint1 /* Handle any coprocessor exceptions. Rely on the fact that exception numbers above EXCCAUSE_CP0_DISABLED all relate to the coprocessors. */ #if XCHAL_CP_NUM > 0 bgeui a0, EXCCAUSE_CP0_DISABLED, _xt_to_coproc_exc #endif /* Handle alloca and syscall exceptions */ #if XCHAL_HAVE_WINDOWED beqi a0, EXCCAUSE_ALLOCA, _xt_to_alloca_exc #endif beqi a0, EXCCAUSE_SYSCALL, _xt_to_syscall_exc /* Handle all other exceptions. All can have user-defined handlers. */ /* NOTE: we'll stay on the user stack for exception handling. */ /* Allocate exception frame and save minimal context. */ mov a0, sp addi sp, sp, -XT_STK_FRMSZ s32i a0, sp, XT_STK_A1 #if XCHAL_HAVE_WINDOWED s32e a0, sp, -12 /* for debug backtrace */ #endif rsr a0, PS /* save interruptee's PS */ s32i a0, sp, XT_STK_PS rsr a0, EPC_1 /* save interruptee's PC */ s32i a0, sp, XT_STK_PC rsr a0, EXCSAVE_1 /* save interruptee's a0 */ s32i a0, sp, XT_STK_A0 #if XCHAL_HAVE_WINDOWED s32e a0, sp, -16 /* for debug backtrace */ #endif s32i a12, sp, XT_STK_A12 /* _xt_context_save requires A12- */ s32i a13, sp, XT_STK_A13 /* A13 to have already been saved */ call0 _xt_context_save /* Save exc cause and vaddr into exception frame */ rsr a0, EXCCAUSE s32i a0, sp, XT_STK_EXCCAUSE rsr a0, EXCVADDR s32i a0, sp, XT_STK_EXCVADDR /* Set up PS for C, reenable hi-pri interrupts, and clear EXCM. */ #ifdef __XTENSA_CALL0_ABI__ movi a0, PS_INTLEVEL(XCHAL_EXCM_LEVEL) | PS_UM #else movi a0, PS_INTLEVEL(XCHAL_EXCM_LEVEL) | PS_UM | PS_WOE #endif wsr a0, PS #ifdef XT_DEBUG_BACKTRACE #ifndef __XTENSA_CALL0_ABI__ rsr a0, EPC_1 /* return address for debug backtrace */ movi a5, 0xC0000000 /* constant with top 2 bits set (call size) */ rsync /* wait for WSR.PS to complete */ or a0, a0, a5 /* set top 2 bits */ addx2 a0, a5, a0 /* clear top bit -- thus simulating call4 size */ #else rsync /* wait for WSR.PS to complete */ #endif #endif rsr a2, EXCCAUSE /* recover exc cause */ #ifdef XT_INTEXC_HOOKS /* Call exception hook to pre-handle exceptions (if installed). Pass EXCCAUSE in a2, and check result in a2 (if -1, skip default handling). */ movi a4, _xt_intexc_hooks l32i a4, a4, 0 /* user exception hook index 0 */ beqz a4, 1f .Ln_xt_user_exc_call_hook: #ifdef __XTENSA_CALL0_ABI__ callx0 a4 beqi a2, -1, .L_xt_user_done #else mov a6, a2 callx4 a4 beqi a6, -1, .L_xt_user_done mov a2, a6 #endif 1: #endif rsr a2, EXCCAUSE /* recover exc cause */ movi a3, _xt_exception_table addx4 a4, a2, a3 /* a4 = address of exception table entry */ l32i a4, a4, 0 /* a4 = handler address */ #ifdef __XTENSA_CALL0_ABI__ mov a2, sp /* a2 = pointer to exc frame */ callx0 a4 /* call handler */ #else mov a6, sp /* a6 = pointer to exc frame */ callx4 a4 /* call handler */ #endif .L_xt_user_done: /* Restore context and return */ call0 _xt_context_restore l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */ wsr a0, PS l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */ wsr a0, EPC_1 l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */ l32i sp, sp, XT_STK_A1 /* remove exception frame */ rsync /* ensure PS and EPC written */ rfe /* PS.EXCM is cleared */ /* -------------------------------------------------------------------------------- Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT on entry and used to return to a thread or interrupted interrupt handler. -------------------------------------------------------------------------------- */ .global _xt_user_exit .type _xt_user_exit,@function .align 4 _xt_user_exit: l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */ wsr a0, PS l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */ wsr a0, EPC_1 l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */ l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */ rsync /* ensure PS and EPC written */ rfe /* PS.EXCM is cleared */ /* -------------------------------------------------------------------------------- Syscall Exception Handler (jumped to from User Exception Handler). Syscall 0 is required to spill the register windows (no-op in Call 0 ABI). Only syscall 0 is handled here. Other syscalls return -1 to caller in a2. -------------------------------------------------------------------------------- */ .text .type _xt_syscall_exc,@function .align 4 _xt_syscall_exc: #ifdef __XTENSA_CALL0_ABI__ /* Save minimal regs for scratch. Syscall 0 does nothing in Call0 ABI. Use a minimal stack frame (16B) to save A2 & A3 for scratch. PS.EXCM could be cleared here, but unlikely to improve worst-case latency. rsr a0, PS addi a0, a0, -PS_EXCM_MASK wsr a0, PS */ addi sp, sp, -16 s32i a2, sp, 8 s32i a3, sp, 12 #else /* Windowed ABI */ /* Save necessary context and spill the register windows. PS.EXCM is still set and must remain set until after the spill. Reuse context save function though it saves more than necessary. For this reason, a full interrupt stack frame is allocated. */ addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */ s32i a12, sp, XT_STK_A12 /* _xt_context_save requires A12- */ s32i a13, sp, XT_STK_A13 /* A13 to have already been saved */ call0 _xt_context_save #endif /* Grab the interruptee's PC and skip over the 'syscall' instruction. If it's at the end of a zero-overhead loop and it's not on the last iteration, decrement loop counter and skip to beginning of loop. */ rsr a2, EPC_1 /* a2 = PC of 'syscall' */ addi a3, a2, 3 /* ++PC */ #if XCHAL_HAVE_LOOPS rsr a0, LEND /* if (PC == LEND */ bne a3, a0, 1f rsr a0, LCOUNT /* && LCOUNT != 0) */ beqz a0, 1f /* { */ addi a0, a0, -1 /* --LCOUNT */ rsr a3, LBEG /* PC = LBEG */ wsr a0, LCOUNT /* } */ #endif 1: wsr a3, EPC_1 /* update PC */ /* Restore interruptee's context and return from exception. */ #ifdef __XTENSA_CALL0_ABI__ l32i a2, sp, 8 l32i a3, sp, 12 addi sp, sp, 16 #else call0 _xt_context_restore addi sp, sp, XT_STK_FRMSZ #endif movi a0, -1 movnez a2, a0, a2 /* return -1 if not syscall 0 */ rsr a0, EXCSAVE_1 rfe /* -------------------------------------------------------------------------------- Co-Processor Exception Handler (jumped to from User Exception Handler). These exceptions are generated by co-processor instructions, which are only allowed in thread code (not in interrupts or kernel code). This restriction is deliberately imposed to reduce the burden of state-save/restore in interrupts. -------------------------------------------------------------------------------- */ #if XCHAL_CP_NUM > 0 .section .rodata, "a" /* Offset to CP n save area in thread's CP save area. */ .global _xt_coproc_sa_offset .type _xt_coproc_sa_offset,@object .align 16 /* minimize crossing cache boundaries */ _xt_coproc_sa_offset: .word XT_CP0_SA, XT_CP1_SA, XT_CP2_SA, XT_CP3_SA .word XT_CP4_SA, XT_CP5_SA, XT_CP6_SA, XT_CP7_SA /* Bitmask for CP n's CPENABLE bit. */ .type _xt_coproc_mask,@object .align 16,,8 /* try to keep it all in one cache line */ .set i, 0 _xt_coproc_mask: .rept XCHAL_CP_MAX .long (i<<16) | (1<= 2 .begin literal_prefix .Level2InterruptVector .section .Level2InterruptVector.text, "ax" .global _Level2Vector .type _Level2Vector,@function .literal_position .align 4 _Level2Vector: wsr a0, EXCSAVE_2 /* preserve a0 */ call0 _xt_medint2 /* load interrupt handler */ /* never returns here - call0 is used as a jump (see note at top) */ .end literal_prefix .text .type _xt_medint2,@function .align 4 _xt_medint2: mov a0, sp /* sp == a1 */ addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */ s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */ rsr a0, EPS_2 /* save interruptee's PS */ s32i a0, sp, XT_STK_PS rsr a0, EPC_2 /* save interruptee's PC */ s32i a0, sp, XT_STK_PC rsr a0, EXCSAVE_2 /* save interruptee's a0 */ s32i a0, sp, XT_STK_A0 movi a0, _xt_medint2_exit /* save exit point for dispatch */ s32i a0, sp, XT_STK_EXIT /* Save rest of interrupt context and enter RTOS. */ call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */ /* !! We are now on the RTOS system stack !! */ /* Set up PS for C, enable interrupts above this level and clear EXCM. */ #ifdef __XTENSA_CALL0_ABI__ movi a0, PS_INTLEVEL(2) | PS_UM #else movi a0, PS_INTLEVEL(2) | PS_UM | PS_WOE #endif wsr a0, PS rsync /* OK to call C code at this point, dispatch user ISRs */ dispatch_c_isr 2 XCHAL_INTLEVEL2_MASK /* Done handling interrupts, transfer control to OS */ call0 XT_RTOS_INT_EXIT /* does not return directly here */ /* Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT on entry and used to return to a thread or interrupted interrupt handler. */ .global _xt_medint2_exit .type _xt_medint2_exit,@function .align 4 _xt_medint2_exit: /* Restore only level-specific regs (the rest were already restored) */ l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */ wsr a0, EPS_2 l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */ wsr a0, EPC_2 l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */ l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */ rsync /* ensure EPS and EPC written */ rfi 2 #endif /* Level 2 */ #if XCHAL_EXCM_LEVEL >= 3 .begin literal_prefix .Level3InterruptVector .section .Level3InterruptVector.text, "ax" .global _Level3Vector .type _Level3Vector,@function .literal_position .align 4 _Level3Vector: wsr a0, EXCSAVE_3 /* preserve a0 */ call0 _xt_medint3 /* load interrupt handler */ /* never returns here - call0 is used as a jump (see note at top) */ .end literal_prefix .text .type _xt_medint3,@function .align 4 _xt_medint3: mov a0, sp /* sp == a1 */ addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */ s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */ rsr a0, EPS_3 /* save interruptee's PS */ s32i a0, sp, XT_STK_PS rsr a0, EPC_3 /* save interruptee's PC */ s32i a0, sp, XT_STK_PC rsr a0, EXCSAVE_3 /* save interruptee's a0 */ s32i a0, sp, XT_STK_A0 movi a0, _xt_medint3_exit /* save exit point for dispatch */ s32i a0, sp, XT_STK_EXIT /* Save rest of interrupt context and enter RTOS. */ call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */ /* !! We are now on the RTOS system stack !! */ /* Set up PS for C, enable interrupts above this level and clear EXCM. */ #ifdef __XTENSA_CALL0_ABI__ movi a0, PS_INTLEVEL(3) | PS_UM #else movi a0, PS_INTLEVEL(3) | PS_UM | PS_WOE #endif wsr a0, PS rsync /* OK to call C code at this point, dispatch user ISRs */ dispatch_c_isr 3 XCHAL_INTLEVEL3_MASK /* Done handling interrupts, transfer control to OS */ call0 XT_RTOS_INT_EXIT /* does not return directly here */ /* Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT on entry and used to return to a thread or interrupted interrupt handler. */ .global _xt_medint3_exit .type _xt_medint3_exit,@function .align 4 _xt_medint3_exit: /* Restore only level-specific regs (the rest were already restored) */ l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */ wsr a0, EPS_3 l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */ wsr a0, EPC_3 l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */ l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */ rsync /* ensure EPS and EPC written */ rfi 3 #endif /* Level 3 */ #if XCHAL_EXCM_LEVEL >= 4 .begin literal_prefix .Level4InterruptVector .section .Level4InterruptVector.text, "ax" .global _Level4Vector .type _Level4Vector,@function .literal_position .align 4 _Level4Vector: wsr a0, EXCSAVE_4 /* preserve a0 */ call0 _xt_medint4 /* load interrupt handler */ .end literal_prefix .text .type _xt_medint4,@function .align 4 _xt_medint4: mov a0, sp /* sp == a1 */ addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */ s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */ rsr a0, EPS_4 /* save interruptee's PS */ s32i a0, sp, XT_STK_PS rsr a0, EPC_4 /* save interruptee's PC */ s32i a0, sp, XT_STK_PC rsr a0, EXCSAVE_4 /* save interruptee's a0 */ s32i a0, sp, XT_STK_A0 movi a0, _xt_medint4_exit /* save exit point for dispatch */ s32i a0, sp, XT_STK_EXIT /* Save rest of interrupt context and enter RTOS. */ call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */ /* !! We are now on the RTOS system stack !! */ /* Set up PS for C, enable interrupts above this level and clear EXCM. */ #ifdef __XTENSA_CALL0_ABI__ movi a0, PS_INTLEVEL(4) | PS_UM #else movi a0, PS_INTLEVEL(4) | PS_UM | PS_WOE #endif wsr a0, PS rsync /* OK to call C code at this point, dispatch user ISRs */ dispatch_c_isr 4 XCHAL_INTLEVEL4_MASK /* Done handling interrupts, transfer control to OS */ call0 XT_RTOS_INT_EXIT /* does not return directly here */ /* Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT on entry and used to return to a thread or interrupted interrupt handler. */ .global _xt_medint4_exit .type _xt_medint4_exit,@function .align 4 _xt_medint4_exit: /* Restore only level-specific regs (the rest were already restored) */ l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */ wsr a0, EPS_4 l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */ wsr a0, EPC_4 l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */ l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */ rsync /* ensure EPS and EPC written */ rfi 4 #endif /* Level 4 */ #if XCHAL_EXCM_LEVEL >= 5 .begin literal_prefix .Level5InterruptVector .section .Level5InterruptVector.text, "ax" .global _Level5Vector .type _Level5Vector,@function .literal_position .align 4 _Level5Vector: wsr a0, EXCSAVE_5 /* preserve a0 */ call0 _xt_medint5 /* load interrupt handler */ .end literal_prefix .text .type _xt_medint5,@function .align 4 _xt_medint5: mov a0, sp /* sp == a1 */ addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */ s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */ rsr a0, EPS_5 /* save interruptee's PS */ s32i a0, sp, XT_STK_PS rsr a0, EPC_5 /* save interruptee's PC */ s32i a0, sp, XT_STK_PC rsr a0, EXCSAVE_5 /* save interruptee's a0 */ s32i a0, sp, XT_STK_A0 movi a0, _xt_medint5_exit /* save exit point for dispatch */ s32i a0, sp, XT_STK_EXIT /* Save rest of interrupt context and enter RTOS. */ call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */ /* !! We are now on the RTOS system stack !! */ /* Set up PS for C, enable interrupts above this level and clear EXCM. */ #ifdef __XTENSA_CALL0_ABI__ movi a0, PS_INTLEVEL(5) | PS_UM #else movi a0, PS_INTLEVEL(5) | PS_UM | PS_WOE #endif wsr a0, PS rsync /* OK to call C code at this point, dispatch user ISRs */ dispatch_c_isr 5 XCHAL_INTLEVEL5_MASK /* Done handling interrupts, transfer control to OS */ call0 XT_RTOS_INT_EXIT /* does not return directly here */ /* Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT on entry and used to return to a thread or interrupted interrupt handler. */ .global _xt_medint5_exit .type _xt_medint5_exit,@function .align 4 _xt_medint5_exit: /* Restore only level-specific regs (the rest were already restored) */ l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */ wsr a0, EPS_5 l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */ wsr a0, EPC_5 l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */ l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */ rsync /* ensure EPS and EPC written */ rfi 5 #endif /* Level 5 */ #if XCHAL_EXCM_LEVEL >= 6 .begin literal_prefix .Level6InterruptVector .section .Level6InterruptVector.text, "ax" .global _Level6Vector .type _Level6Vector,@function .literal_position .align 4 _Level6Vector: wsr a0, EXCSAVE_6 /* preserve a0 */ call0 _xt_medint6 /* load interrupt handler */ .end literal_prefix .text .type _xt_medint6,@function .align 4 _xt_medint6: mov a0, sp /* sp == a1 */ addi sp, sp, -XT_STK_FRMSZ /* allocate interrupt stack frame */ s32i a0, sp, XT_STK_A1 /* save pre-interrupt SP */ rsr a0, EPS_6 /* save interruptee's PS */ s32i a0, sp, XT_STK_PS rsr a0, EPC_6 /* save interruptee's PC */ s32i a0, sp, XT_STK_PC rsr a0, EXCSAVE_6 /* save interruptee's a0 */ s32i a0, sp, XT_STK_A0 movi a0, _xt_medint6_exit /* save exit point for dispatch */ s32i a0, sp, XT_STK_EXIT /* Save rest of interrupt context and enter RTOS. */ call0 XT_RTOS_INT_ENTER /* common RTOS interrupt entry */ /* !! We are now on the RTOS system stack !! */ /* Set up PS for C, enable interrupts above this level and clear EXCM. */ #ifdef __XTENSA_CALL0_ABI__ movi a0, PS_INTLEVEL(6) | PS_UM #else movi a0, PS_INTLEVEL(6) | PS_UM | PS_WOE #endif wsr a0, PS rsync /* OK to call C code at this point, dispatch user ISRs */ dispatch_c_isr 6 XCHAL_INTLEVEL6_MASK /* Done handling interrupts, transfer control to OS */ call0 XT_RTOS_INT_EXIT /* does not return directly here */ /* Exit point for dispatch. Saved in interrupt stack frame at XT_STK_EXIT on entry and used to return to a thread or interrupted interrupt handler. */ .global _xt_medint6_exit .type _xt_medint6_exit,@function .align 4 _xt_medint6_exit: /* Restore only level-specific regs (the rest were already restored) */ l32i a0, sp, XT_STK_PS /* retrieve interruptee's PS */ wsr a0, EPS_6 l32i a0, sp, XT_STK_PC /* retrieve interruptee's PC */ wsr a0, EPC_6 l32i a0, sp, XT_STK_A0 /* retrieve interruptee's A0 */ l32i sp, sp, XT_STK_A1 /* remove interrupt stack frame */ rsync /* ensure EPS and EPC written */ rfi 6 #endif /* Level 6 */ /******************************************************************************* HIGH PRIORITY (LEVEL > XCHAL_EXCM_LEVEL) INTERRUPT VECTORS AND HANDLERS High priority interrupts are by definition those with priorities greater than XCHAL_EXCM_LEVEL. This includes non-maskable (NMI). High priority interrupts cannot interact with the RTOS, that is they must save all regs they use and not call any RTOS function. A further restriction imposed by the Xtensa windowed architecture is that high priority interrupts must not modify the stack area even logically "above" the top of the interrupted stack (they need to provide their own stack or static save area). Cadence Design Systems recommends high priority interrupt handlers be coded in assembly and used for purposes requiring very short service times. Here are templates for high priority (level 2+) interrupt vectors. They assume only one interrupt per level to avoid the burden of identifying which interrupts at this level are pending and enabled. This allows for minimum latency and avoids having to save/restore a2 in addition to a0. If more than one interrupt per high priority level is configured, this burden is on the handler which in any case must provide a way to save and restore registers it uses without touching the interrupted stack. Each vector goes at a predetermined location according to the Xtensa hardware configuration, which is ensured by its placement in a special section known to the Xtensa linker support package (LSP). It performs the minimum necessary before jumping to the handler in the .text section. *******************************************************************************/ /* Currently only shells for high priority interrupt handlers are provided here. However a template and example can be found in the Cadence Design Systems tools documentation: "Microprocessor Programmer's Guide". */ #if XCHAL_NUM_INTLEVELS >=2 && XCHAL_EXCM_LEVEL <2 && XCHAL_DEBUGLEVEL !=2 .begin literal_prefix .Level2InterruptVector .section .Level2InterruptVector.text, "ax" .global _Level2Vector .type _Level2Vector,@function .literal_position .align 4 _Level2Vector: wsr a0, EXCSAVE_2 /* preserve a0 */ call0 _xt_highint2 /* load interrupt handler */ .end literal_prefix .text .type _xt_highint2,@function .align 4 _xt_highint2: #ifdef XT_INTEXC_HOOKS /* Call interrupt hook if present to (pre)handle interrupts. */ movi a0, _xt_intexc_hooks l32i a0, a0, 2<<2 beqz a0, 1f .Ln_xt_highint2_call_hook: callx0 a0 /* must NOT disturb stack! */ 1: #endif /* USER_EDIT: ADD HIGH PRIORITY LEVEL 2 INTERRUPT HANDLER CODE HERE. */ .align 4 .L_xt_highint2_exit: rsr a0, EXCSAVE_2 /* restore a0 */ rfi 2 #endif /* Level 2 */ #if XCHAL_NUM_INTLEVELS >=3 && XCHAL_EXCM_LEVEL <3 && XCHAL_DEBUGLEVEL !=3 .begin literal_prefix .Level3InterruptVector .section .Level3InterruptVector.text, "ax" .global _Level3Vector .type _Level3Vector,@function .literal_position .align 4 _Level3Vector: wsr a0, EXCSAVE_3 /* preserve a0 */ call0 _xt_highint3 /* load interrupt handler */ /* never returns here - call0 is used as a jump (see note at top) */ .end literal_prefix .text .type _xt_highint3,@function .align 4 _xt_highint3: #ifdef XT_INTEXC_HOOKS /* Call interrupt hook if present to (pre)handle interrupts. */ movi a0, _xt_intexc_hooks l32i a0, a0, 3<<2 beqz a0, 1f .Ln_xt_highint3_call_hook: callx0 a0 /* must NOT disturb stack! */ 1: #endif /* USER_EDIT: ADD HIGH PRIORITY LEVEL 3 INTERRUPT HANDLER CODE HERE. */ .align 4 .L_xt_highint3_exit: rsr a0, EXCSAVE_3 /* restore a0 */ rfi 3 #endif /* Level 3 */ #if XCHAL_NUM_INTLEVELS >=4 && XCHAL_EXCM_LEVEL <4 && XCHAL_DEBUGLEVEL !=4 .begin literal_prefix .Level4InterruptVector .section .Level4InterruptVector.text, "ax" .global _Level4Vector .type _Level4Vector,@function .literal_position .align 4 _Level4Vector: wsr a0, EXCSAVE_4 /* preserve a0 */ call0 _xt_highint4 /* load interrupt handler */ /* never returns here - call0 is used as a jump (see note at top) */ .end literal_prefix .text .type _xt_highint4,@function .align 4 _xt_highint4: #ifdef XT_INTEXC_HOOKS /* Call interrupt hook if present to (pre)handle interrupts. */ movi a0, _xt_intexc_hooks l32i a0, a0, 4<<2 beqz a0, 1f .Ln_xt_highint4_call_hook: callx0 a0 /* must NOT disturb stack! */ 1: #endif /* USER_EDIT: ADD HIGH PRIORITY LEVEL 4 INTERRUPT HANDLER CODE HERE. */ .align 4 .L_xt_highint4_exit: rsr a0, EXCSAVE_4 /* restore a0 */ rfi 4 #endif /* Level 4 */ #if XCHAL_NUM_INTLEVELS >=5 && XCHAL_EXCM_LEVEL <5 && XCHAL_DEBUGLEVEL !=5 .begin literal_prefix .Level5InterruptVector .section .Level5InterruptVector.text, "ax" .global _Level5Vector .type _Level5Vector,@function .literal_position .align 4 _Level5Vector: wsr a0, EXCSAVE_5 /* preserve a0 */ call0 _xt_highint5 /* load interrupt handler */ /* never returns here - call0 is used as a jump (see note at top) */ .end literal_prefix .text .type _xt_highint5,@function .align 4 _xt_highint5: #ifdef XT_INTEXC_HOOKS /* Call interrupt hook if present to (pre)handle interrupts. */ movi a0, _xt_intexc_hooks l32i a0, a0, 5<<2 beqz a0, 1f .Ln_xt_highint5_call_hook: callx0 a0 /* must NOT disturb stack! */ 1: #endif /* USER_EDIT: ADD HIGH PRIORITY LEVEL 5 INTERRUPT HANDLER CODE HERE. */ .align 4 .L_xt_highint5_exit: rsr a0, EXCSAVE_5 /* restore a0 */ rfi 5 #endif /* Level 5 */ #if XCHAL_NUM_INTLEVELS >=6 && XCHAL_EXCM_LEVEL <6 && XCHAL_DEBUGLEVEL !=6 .begin literal_prefix .Level6InterruptVector .section .Level6InterruptVector.text, "ax" .global _Level6Vector .type _Level6Vector,@function .literal_position .align 4 _Level6Vector: wsr a0, EXCSAVE_6 /* preserve a0 */ call0 _xt_highint6 /* load interrupt handler */ /* never returns here - call0 is used as a jump (see note at top) */ .end literal_prefix .text .type _xt_highint6,@function .align 4 _xt_highint6: #ifdef XT_INTEXC_HOOKS /* Call interrupt hook if present to (pre)handle interrupts. */ movi a0, _xt_intexc_hooks l32i a0, a0, 6<<2 beqz a0, 1f .Ln_xt_highint6_call_hook: callx0 a0 /* must NOT disturb stack! */ 1: #endif /* USER_EDIT: ADD HIGH PRIORITY LEVEL 6 INTERRUPT HANDLER CODE HERE. */ .align 4 .L_xt_highint6_exit: rsr a0, EXCSAVE_6 /* restore a0 */ rfi 6 #endif /* Level 6 */ #if XCHAL_HAVE_NMI #define NMI_STACK_CANARY 0xABBABABA /* Stack space for NMI handler NMI handler stack high water mark measured at 0x134 bytes. Any use of the NMI timer callback will add stack overhead as well. The NMI handler does a basic check for stack overflow */ .section .bss .balign 16 NMIHandlerStack: .skip 0x200 .NMIHandlerStackTop: .begin literal_prefix .NMIExceptionVector .section .NMIExceptionVector.text, "ax" .global _NMIExceptionVector .type _NMIExceptionVector,@function .literal_position .align 4 _NMIExceptionVector: wsr a0, EXCSAVE + XCHAL_NMILEVEL _ /* preserve a0 */ call0 _xt_nmi /* load interrupt handler */ /* never returns here - call0 is used as a jump (see note at top) */ .end literal_prefix .text .type _xt_nmi,@function .align 4 _xt_nmi: #ifdef XT_INTEXC_HOOKS /* Call interrupt hook if present to (pre)handle interrupts. */ movi a0, _xt_intexc_hooks l32i a0, a0, XCHAL_NMILEVEL<<2 beqz a0, 1f .Ln_xt_nmi_call_hook: callx0 a0 /* must NOT disturb stack! */ 1: #endif /* USER_EDIT: ADD HIGH PRIORITY NON-MASKABLE INTERRUPT (NMI) HANDLER CODE HERE. */ #if defined(RIOT_VERSION) && defined(MCU_ESP8266) rsr a0, EXCSAVE + XCHAL_NMILEVEL /* restore a0 as saved in _NMIExceptionHandler */ /*************************** NMI Handler BEGIN **************************/ /* * PLEASE NOTE: The code between "NMI Handler BEGIN" and * "NMI Handler END" markers was extracted from esp-open-rtos. * It is under the following copyright: * * Part of esp-open-rtos * Original vector contents Copyright (C) 2014-2015 Espressif Systems * Additions Copyright (C) Superhouse Automation Pty Ltd and Angus Gratton * BSD Licensed as described in the file LICENSE. */ wsr sp, excsave3 # excsave3 holds user stack movi sp, .NMIHandlerStackTop - 0x40 s32i a0, sp, 0x00 s32i a2, sp, 0x04 s32i a3, sp, 0x08 s32i a4, sp, 0x0c s32i a5, sp, 0x10 s32i a6, sp, 0x14 s32i a7, sp, 0x18 s32i a8, sp, 0x1c s32i a9, sp, 0x20 s32i a10, sp, 0x24 s32i a11, sp, 0x28 rsr a0, epc1 s32i a0, sp, 0x2c rsr a0, exccause s32i a0, sp, 0x30 rsr a0, excsave1 s32i a0, sp, 0x34 rsr a0, excvaddr s32i a0, sp, 0x38 rsr a0, sar s32i a0, sp, 0x3c movi a0, 0x23 # Override PS for NMI handler wsr a0, ps rsync /* mark the stack overflow point before we call the actual NMI handler */ movi a0, NMIHandlerStack movi a2, NMI_STACK_CANARY s32i a2, a0, 0x00 call0 wDev_ProcessFiq /* verify we didn't overflow */ movi a0, NMIHandlerStack l32i a3, a0, 0 movi a2, NMI_STACK_CANARY bne a3, a2, _xt_panic /* .NMIFatalStackOverflow */ l32i a0, sp, 0x3c wsr a0, sar l32i a0, sp, 0x38 wsr a0, excvaddr l32i a0, sp, 0x34 wsr a0, excsave1 l32i a0, sp, 0x30 wsr a0, exccause l32i a0, sp, 0x2c wsr a0, epc1 l32i a11, sp, 0x28 l32i a10, sp, 0x24 l32i a9, sp, 0x20 l32i a8, sp, 0x1c l32i a7, sp, 0x18 l32i a6, sp, 0x14 l32i a5, sp, 0x10 l32i a4, sp, 0x0c l32i a3, sp, 0x08 movi a0, 0x33 # Reset PS wsr a0, ps rsync /* set dport nmi status to 1 (wDev_ProcessFiq clears bit 0 and verifies it * stays cleared, see * http://esp8266-re.foogod.com/wiki/WDev_ProcessFiq_%28IoT_RTOS_SDK_0.9.9%29) */ movi a0, 0x3ff00000 movi a2, 0x1 s32i a2, a0, 0 l32i a2, sp, 0x04 l32i a0, sp, 0x00 movi a1, 0x0 xsr a1, excsave3 # Load stack back from excsave3, clear excsave3 rfi XCHAL_NMILEVEL .section .rodata .NMIStackOverflowErrorMsg: .string "\nFATAL: NMI Stack Overflow\n" .section .NMIExceptionhandler.text, "ax" .literal_position .NMIFatalStackOverflow: movi a2, .NMIStackOverflowErrorMsg call0 printf .NMIInfiniteLoop: j .NMIInfiniteLoop /* TODO: replace with call to abort() */ /*************************** NMI Handler END ****************************/ #endif /* defined(RIOT_VERSION) && defined(MCU_ESP8266) */ .align 4 .L_xt_nmi_exit: rsr a0, EXCSAVE + XCHAL_NMILEVEL /* restore a0 */ rfi XCHAL_NMILEVEL #endif /* NMI */ /******************************************************************************* WINDOW OVERFLOW AND UNDERFLOW EXCEPTION VECTORS AND ALLOCA EXCEPTION HANDLER Here is the code for each window overflow/underflow exception vector and (interspersed) efficient code for handling the alloca exception cause. Window exceptions are handled entirely in the vector area and are very tight for performance. The alloca exception is also handled entirely in the window vector area so comes at essentially no cost in code size. Users should never need to modify them and Cadence Design Systems recommends they do not. Window handlers go at predetermined vector locations according to the Xtensa hardware configuration, which is ensured by their placement in a special section known to the Xtensa linker support package (LSP). Since their offsets in that section are always the same, the LSPs do not define a section per vector. These things are coded for XEA2 only (XEA1 is not supported). Note on Underflow Handlers: The underflow handler for returning from call[i+1] to call[i] must preserve all the registers from call[i+1]'s window. In particular, a0 and a1 must be preserved because the RETW instruction will be reexecuted (and may even underflow if an intervening exception has flushed call[i]'s registers). Registers a2 and up may contain return values. *******************************************************************************/ #if XCHAL_HAVE_WINDOWED .section .WindowVectors.text, "ax" /* -------------------------------------------------------------------------------- Window Overflow Exception for Call4. Invoked if a call[i] referenced a register (a4-a15) that contains data from ancestor call[j]; call[j] had done a call4 to call[j+1]. On entry here: window rotated to call[j] start point; a0-a3 are registers to be saved; a4-a15 must be preserved; a5 is call[j+1]'s stack pointer. -------------------------------------------------------------------------------- */ .org 0x0 .global _WindowOverflow4 _WindowOverflow4: s32e a0, a5, -16 /* save a0 to call[j+1]'s stack frame */ s32e a1, a5, -12 /* save a1 to call[j+1]'s stack frame */ s32e a2, a5, -8 /* save a2 to call[j+1]'s stack frame */ s32e a3, a5, -4 /* save a3 to call[j+1]'s stack frame */ rfwo /* rotates back to call[i] position */ /* -------------------------------------------------------------------------------- Window Underflow Exception for Call4 Invoked by RETW returning from call[i+1] to call[i] where call[i]'s registers must be reloaded (not live in ARs); where call[i] had done a call4 to call[i+1]. On entry here: window rotated to call[i] start point; a0-a3 are undefined, must be reloaded with call[i].reg[0..3]; a4-a15 must be preserved (they are call[i+1].reg[0..11]); a5 is call[i+1]'s stack pointer. -------------------------------------------------------------------------------- */ .org 0x40 .global _WindowUnderflow4 _WindowUnderflow4: l32e a0, a5, -16 /* restore a0 from call[i+1]'s stack frame */ l32e a1, a5, -12 /* restore a1 from call[i+1]'s stack frame */ l32e a2, a5, -8 /* restore a2 from call[i+1]'s stack frame */ l32e a3, a5, -4 /* restore a3 from call[i+1]'s stack frame */ rfwu /* -------------------------------------------------------------------------------- Handle alloca exception generated by interruptee executing 'movsp'. This uses space between the window vectors, so is essentially "free". All interruptee's regs are intact except a0 which is saved in EXCSAVE_1, and PS.EXCM has been set by the exception hardware (can't be interrupted). The fact the alloca exception was taken means the registers associated with the base-save area have been spilled and will be restored by the underflow handler, so those 4 registers are available for scratch. The code is optimized to avoid unaligned branches and minimize cache misses. -------------------------------------------------------------------------------- */ .align 4 .global _xt_alloca_exc _xt_alloca_exc: rsr a0, WINDOWBASE /* grab WINDOWBASE before rotw changes it */ rotw -1 /* WINDOWBASE goes to a4, new a0-a3 are scratch */ rsr a2, PS extui a3, a2, XCHAL_PS_OWB_SHIFT, XCHAL_PS_OWB_BITS xor a3, a3, a4 /* bits changed from old to current windowbase */ rsr a4, EXCSAVE_1 /* restore original a0 (now in a4) */ slli a3, a3, XCHAL_PS_OWB_SHIFT xor a2, a2, a3 /* flip changed bits in old window base */ wsr a2, PS /* update PS.OWB to new window base */ rsync _bbci.l a4, 31, _WindowUnderflow4 rotw -1 /* original a0 goes to a8 */ _bbci.l a8, 30, _WindowUnderflow8 rotw -1 j _WindowUnderflow12 /* -------------------------------------------------------------------------------- Window Overflow Exception for Call8 Invoked if a call[i] referenced a register (a4-a15) that contains data from ancestor call[j]; call[j] had done a call8 to call[j+1]. On entry here: window rotated to call[j] start point; a0-a7 are registers to be saved; a8-a15 must be preserved; a9 is call[j+1]'s stack pointer. -------------------------------------------------------------------------------- */ .org 0x80 .global _WindowOverflow8 _WindowOverflow8: s32e a0, a9, -16 /* save a0 to call[j+1]'s stack frame */ l32e a0, a1, -12 /* a0 <- call[j-1]'s sp (used to find end of call[j]'s frame) */ s32e a1, a9, -12 /* save a1 to call[j+1]'s stack frame */ s32e a2, a9, -8 /* save a2 to call[j+1]'s stack frame */ s32e a3, a9, -4 /* save a3 to call[j+1]'s stack frame */ s32e a4, a0, -32 /* save a4 to call[j]'s stack frame */ s32e a5, a0, -28 /* save a5 to call[j]'s stack frame */ s32e a6, a0, -24 /* save a6 to call[j]'s stack frame */ s32e a7, a0, -20 /* save a7 to call[j]'s stack frame */ rfwo /* rotates back to call[i] position */ /* -------------------------------------------------------------------------------- Window Underflow Exception for Call8 Invoked by RETW returning from call[i+1] to call[i] where call[i]'s registers must be reloaded (not live in ARs); where call[i] had done a call8 to call[i+1]. On entry here: window rotated to call[i] start point; a0-a7 are undefined, must be reloaded with call[i].reg[0..7]; a8-a15 must be preserved (they are call[i+1].reg[0..7]); a9 is call[i+1]'s stack pointer. -------------------------------------------------------------------------------- */ .org 0xC0 .global _WindowUnderflow8 _WindowUnderflow8: l32e a0, a9, -16 /* restore a0 from call[i+1]'s stack frame */ l32e a1, a9, -12 /* restore a1 from call[i+1]'s stack frame */ l32e a2, a9, -8 /* restore a2 from call[i+1]'s stack frame */ l32e a7, a1, -12 /* a7 <- call[i-1]'s sp (used to find end of call[i]'s frame) */ l32e a3, a9, -4 /* restore a3 from call[i+1]'s stack frame */ l32e a4, a7, -32 /* restore a4 from call[i]'s stack frame */ l32e a5, a7, -28 /* restore a5 from call[i]'s stack frame */ l32e a6, a7, -24 /* restore a6 from call[i]'s stack frame */ l32e a7, a7, -20 /* restore a7 from call[i]'s stack frame */ rfwu /* -------------------------------------------------------------------------------- Window Overflow Exception for Call12 Invoked if a call[i] referenced a register (a4-a15) that contains data from ancestor call[j]; call[j] had done a call12 to call[j+1]. On entry here: window rotated to call[j] start point; a0-a11 are registers to be saved; a12-a15 must be preserved; a13 is call[j+1]'s stack pointer. -------------------------------------------------------------------------------- */ .org 0x100 .global _WindowOverflow12 _WindowOverflow12: s32e a0, a13, -16 /* save a0 to call[j+1]'s stack frame */ l32e a0, a1, -12 /* a0 <- call[j-1]'s sp (used to find end of call[j]'s frame) */ s32e a1, a13, -12 /* save a1 to call[j+1]'s stack frame */ s32e a2, a13, -8 /* save a2 to call[j+1]'s stack frame */ s32e a3, a13, -4 /* save a3 to call[j+1]'s stack frame */ s32e a4, a0, -48 /* save a4 to end of call[j]'s stack frame */ s32e a5, a0, -44 /* save a5 to end of call[j]'s stack frame */ s32e a6, a0, -40 /* save a6 to end of call[j]'s stack frame */ s32e a7, a0, -36 /* save a7 to end of call[j]'s stack frame */ s32e a8, a0, -32 /* save a8 to end of call[j]'s stack frame */ s32e a9, a0, -28 /* save a9 to end of call[j]'s stack frame */ s32e a10, a0, -24 /* save a10 to end of call[j]'s stack frame */ s32e a11, a0, -20 /* save a11 to end of call[j]'s stack frame */ rfwo /* rotates back to call[i] position */ /* -------------------------------------------------------------------------------- Window Underflow Exception for Call12 Invoked by RETW returning from call[i+1] to call[i] where call[i]'s registers must be reloaded (not live in ARs); where call[i] had done a call12 to call[i+1]. On entry here: window rotated to call[i] start point; a0-a11 are undefined, must be reloaded with call[i].reg[0..11]; a12-a15 must be preserved (they are call[i+1].reg[0..3]); a13 is call[i+1]'s stack pointer. -------------------------------------------------------------------------------- */ .org 0x140 .global _WindowUnderflow12 _WindowUnderflow12: l32e a0, a13, -16 /* restore a0 from call[i+1]'s stack frame */ l32e a1, a13, -12 /* restore a1 from call[i+1]'s stack frame */ l32e a2, a13, -8 /* restore a2 from call[i+1]'s stack frame */ l32e a11, a1, -12 /* a11 <- call[i-1]'s sp (used to find end of call[i]'s frame) */ l32e a3, a13, -4 /* restore a3 from call[i+1]'s stack frame */ l32e a4, a11, -48 /* restore a4 from end of call[i]'s stack frame */ l32e a5, a11, -44 /* restore a5 from end of call[i]'s stack frame */ l32e a6, a11, -40 /* restore a6 from end of call[i]'s stack frame */ l32e a7, a11, -36 /* restore a7 from end of call[i]'s stack frame */ l32e a8, a11, -32 /* restore a8 from end of call[i]'s stack frame */ l32e a9, a11, -28 /* restore a9 from end of call[i]'s stack frame */ l32e a10, a11, -24 /* restore a10 from end of call[i]'s stack frame */ l32e a11, a11, -20 /* restore a11 from end of call[i]'s stack frame */ rfwu #endif /* XCHAL_HAVE_WINDOWED */