/* * Copyright (C) 2014-2016 Freie Universität Berlin * 2015 Engineering-Spirit * 2016 OTA keys S.A. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_pwm * @{ * * @file * @brief Low-level PWM driver implementation * * @author Hauke Petersen * @author Fabian Nack * @author Nick v. IJzendoorn * @author Aurelien Gonce * * @} */ #include "cpu.h" #include "assert.h" #include "periph/pwm.h" #include "periph/gpio.h" #include "periph_conf.h" #define CCMR_MODE1 (TIM_CCMR1_OC1M_1 | TIM_CCMR1_OC1M_2 | \ TIM_CCMR1_OC2M_1 | TIM_CCMR1_OC2M_2) #define CCMR_MODE2 (TIM_CCMR1_OC1M_0 | TIM_CCMR1_OC1M_1 | \ TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC2M_0 | \ TIM_CCMR1_OC2M_1 | TIM_CCMR1_OC2M_2) static inline TIM_TypeDef *dev(pwm_t pwm) { return pwm_config[pwm].dev; } uint32_t pwm_init(pwm_t pwm, pwm_mode_t mode, uint32_t freq, uint16_t res) { uint32_t timer_clk = periph_timer_clk(pwm_config[pwm].bus); /* in PWM_CENTER mode the counter counts up and down at each period * so the resolution had to be divided by 2 */ res *= (mode == PWM_CENTER) ? 2 : 1; /* verify parameters */ assert((pwm < PWM_NUMOF) && ((freq * res) <= timer_clk)); /* power on the used timer */ periph_clk_en(pwm_config[pwm].bus, pwm_config[pwm].rcc_mask); /* reset configuration and CC channels */ dev(pwm)->CR1 = 0; dev(pwm)->CR2 = 0; for (unsigned i = 0; i < TIMER_CHANNEL_NUMOF; ++i) { TIM_CHAN(pwm, i) = (mode == PWM_RIGHT) ? res : 0; } /* remap the timer to the configured pins (F1 only) */ #ifdef CPU_FAM_STM32F1 AFIO->MAPR |= pwm_config[pwm].remap; #endif /* configure the used pins */ unsigned i = 0; while ((i < TIMER_CHANNEL_NUMOF) && (pwm_config[pwm].chan[i].pin != GPIO_UNDEF)) { gpio_init(pwm_config[pwm].chan[i].pin, GPIO_OUT); gpio_init_af(pwm_config[pwm].chan[i].pin, pwm_config[pwm].af); i++; } /* configure the PWM frequency and resolution by setting the auto-reload * and prescaler registers */ dev(pwm)->PSC = (timer_clk / (res * freq)) - 1; dev(pwm)->ARR = (mode == PWM_CENTER) ? (res / 2) : res - 1; /* set PWM mode */ switch (mode) { case PWM_LEFT: dev(pwm)->CCMR1 = CCMR_MODE1; dev(pwm)->CCMR2 = CCMR_MODE1; break; case PWM_RIGHT: dev(pwm)->CCMR1 = CCMR_MODE2; dev(pwm)->CCMR2 = CCMR_MODE2; /* duty cycle should be reversed */ break; case PWM_CENTER: dev(pwm)->CCMR1 = CCMR_MODE1; dev(pwm)->CCMR2 = CCMR_MODE1; /* center-aligned mode 3 */ dev(pwm)->CR1 |= (TIM_CR1_CMS_0 | TIM_CR1_CMS_1); break; } /* enable PWM outputs and start PWM generation */ #ifdef TIM_BDTR_MOE dev(pwm)->BDTR = TIM_BDTR_MOE; #endif dev(pwm)->CCER = (TIM_CCER_CC1E | TIM_CCER_CC2E | TIM_CCER_CC3E | TIM_CCER_CC4E); dev(pwm)->CR1 |= TIM_CR1_CEN; /* return the actual used PWM frequency */ return (timer_clk / (res * (dev(pwm)->PSC + 1))); } uint8_t pwm_channels(pwm_t pwm) { assert(pwm < PWM_NUMOF); unsigned i = 0; while ((i < TIMER_CHANNEL_NUMOF) && (pwm_config[pwm].chan[i].pin != GPIO_UNDEF)) { i++; } return (uint8_t)i; } void pwm_set(pwm_t pwm, uint8_t channel, uint16_t value) { assert((pwm < PWM_NUMOF) && (channel < TIMER_CHANNEL_NUMOF) && (pwm_config[pwm].chan[channel].pin != GPIO_UNDEF)); /* norm value to maximum possible value */ if (value > dev(pwm)->ARR + 1) { value = (uint16_t)dev(pwm)->ARR + 1; } if (dev(pwm)->CCMR1 == CCMR_MODE2) { /* reverse the value */ value = (uint16_t)dev(pwm)->ARR + 1 - value; } /* set new value */ TIM_CHAN(pwm, pwm_config[pwm].chan[channel].cc_chan) = value; } void pwm_poweron(pwm_t pwm) { assert(pwm < PWM_NUMOF); periph_clk_en(pwm_config[pwm].bus, pwm_config[pwm].rcc_mask); dev(pwm)->CR1 |= TIM_CR1_CEN; } void pwm_poweroff(pwm_t pwm) { assert(pwm < PWM_NUMOF); dev(pwm)->CR1 &= ~TIM_CR1_CEN; periph_clk_dis(pwm_config[pwm].bus, pwm_config[pwm].rcc_mask); }