/* * Copyright (C) 2013 Alaeddine Weslati * Copyright (C) 2015 Freie Universität Berlin * 2017 HAW Hamburg * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup drivers_at86rf2xx * @{ * * @file * @brief Implementation of public functions for AT86RF2xx drivers * * @author Alaeddine Weslati * @author Thomas Eichinger * @author Hauke Petersen * @author Kaspar Schleiser * @author Oliver Hahm * @author Sebastian Meiling * @} */ #include "kernel_defines.h" #include "byteorder.h" #include "net/ieee802154.h" #if IS_USED(IEEE802154_SECURITY) #include "net/ieee802154_security.h" #endif #include "net/gnrc.h" #include "at86rf2xx_registers.h" #include "at86rf2xx_internal.h" #include "at86rf2xx_netdev.h" #if IS_USED(MODULE_AT86RF2XX_AES_SPI) #include "at86rf2xx_aes.h" #endif #define ENABLE_DEBUG 0 #include "debug.h" #if IS_USED(MODULE_AT86RF2XX_AES_SPI) && \ IS_USED(MODULE_IEEE802154_SECURITY) /** * @brief Pass the 802.15.4 encryption key to the transceiver hardware * * @param[in] dev Abstract security device descriptor * @param[in] key Encryption key to be used * @param[in] key_size Size of the encryption key in bytes */ static void _at86rf2xx_set_key(ieee802154_sec_dev_t *dev, const uint8_t *key, uint8_t key_size) { (void)key_size; at86rf2xx_aes_key_write_encrypt((at86rf2xx_t *)dev->ctx, key); } /** * @brief Compute CBC-MAC from IEEE 802.15.4 security context * * @param[in] dev Abstract security device descriptor * @param[out] cipher Buffer to store cipher blocks * @param[in] iv Initial vector * @param[in] plain Input data blocks * @param[in] nblocks Number of blocks */ static void _at86rf2xx_cbc(const ieee802154_sec_dev_t *dev, uint8_t *cipher, uint8_t *iv, const uint8_t *plain, uint8_t nblocks) { at86rf2xx_aes_cbc_encrypt((at86rf2xx_t *)dev->ctx, (aes_block_t *)cipher, NULL, iv, (aes_block_t *)plain, nblocks); } /** * @brief Perform ECB encryption * * @param[in] dev Abstract security device descriptor * @param[out] cipher Output cipher blocks * @param[in] plain Plain blocks * @param[in] nblocks Number of blocks */ static void _at86rf2xx_ecb(const ieee802154_sec_dev_t *dev, uint8_t *cipher, const uint8_t *plain, uint8_t nblocks) { at86rf2xx_aes_ecb_encrypt((at86rf2xx_t *)dev->ctx, (aes_block_t *)cipher, NULL, (aes_block_t *)plain, nblocks); } /** * @brief Struct that contains IEEE 802.15.4 security operations * which are implemented, using the transceiver´s hardware * crypto capabilities */ static const ieee802154_radio_cipher_ops_t _at86rf2xx_cipher_ops = { .set_key = _at86rf2xx_set_key, .ecb = _at86rf2xx_ecb, .cbc = _at86rf2xx_cbc }; #endif /* IS_USED(MODULE_AT86RF2XX_AES_SPI) && \ IS_USED(MODULE_IEEE802154_SECURITY) */ void at86rf2xx_setup(at86rf2xx_t *dev, const at86rf2xx_params_t *params, uint8_t index) { netdev_t *netdev = &dev->netdev.netdev; netdev->driver = &at86rf2xx_driver; /* State to return after receiving or transmitting */ dev->idle_state = AT86RF2XX_STATE_TRX_OFF; /* radio state is P_ON when first powered-on */ dev->state = AT86RF2XX_STATE_P_ON; dev->pending_tx = 0; #if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2) (void) params; /* set all interrupts off */ at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, 0x00); #else /* initialize device descriptor */ dev->params = *params; #endif netdev_register(netdev, NETDEV_AT86RF2XX, index); /* set device address */ netdev_ieee802154_setup(&dev->netdev); } static void at86rf2xx_disable_clock_output(at86rf2xx_t *dev) { #if defined(MODULE_AT86RFA1) || defined(MODULE_AT86RFR2) (void) dev; #else uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_CTRL_0); tmp &= ~(AT86RF2XX_TRX_CTRL_0_MASK__CLKM_CTRL); tmp &= ~(AT86RF2XX_TRX_CTRL_0_MASK__CLKM_SHA_SEL); tmp |= (AT86RF2XX_TRX_CTRL_0_CLKM_CTRL__OFF); at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_CTRL_0, tmp); #endif } void at86rf2xx_enable_smart_idle(at86rf2xx_t *dev) { #if AT86RF2XX_SMART_IDLE_LISTENING uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_RPC); tmp |= AT86RF2XX_TRX_RPC_MASK__RX_RPC__SMART_IDLE; at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_RPC, tmp); at86rf2xx_set_rxsensitivity(dev, RSSI_BASE_VAL); #else (void) dev; #endif } void at86rf2xx_disable_smart_idle(at86rf2xx_t *dev) { #if AT86RF2XX_SMART_IDLE_LISTENING uint8_t tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_RPC); tmp &= ~AT86RF2XX_TRX_RPC_MASK__RX_RPC__SMART_IDLE; at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_RPC, tmp); #else (void) dev; #endif } void at86rf2xx_reset(at86rf2xx_t *dev) { uint8_t tmp; netdev_ieee802154_reset(&dev->netdev); /* Reset state machine to ensure a known state */ if (dev->state == AT86RF2XX_STATE_P_ON) { at86rf2xx_set_state(dev, AT86RF2XX_STATE_FORCE_TRX_OFF); } /* set short and long address */ at86rf2xx_set_addr_long(dev, (eui64_t *)dev->netdev.long_addr); at86rf2xx_set_addr_short(dev, (network_uint16_t *)dev->netdev.short_addr); /* set default channel */ at86rf2xx_set_chan(dev, AT86RF2XX_DEFAULT_CHANNEL); /* set default TX power */ at86rf2xx_set_txpower(dev, AT86RF2XX_DEFAULT_TXPOWER); /* set default options */ if (!IS_ACTIVE(AT86RF2XX_BASIC_MODE)) { at86rf2xx_set_option(dev, AT86RF2XX_OPT_AUTOACK, true); at86rf2xx_set_option(dev, AT86RF2XX_OPT_CSMA, true); static const netopt_enable_t enable = NETOPT_ENABLE; netdev_ieee802154_set(&dev->netdev, NETOPT_ACK_REQ, &enable, sizeof(enable)); } /* enable safe mode (protect RX FIFO until reading data starts) */ at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_CTRL_2, AT86RF2XX_TRX_CTRL_2_MASK__RX_SAFE_MODE); #ifdef MODULE_AT86RF212B at86rf2xx_set_page(dev, AT86RF2XX_DEFAULT_PAGE); #endif #if !defined(MODULE_AT86RFA1) && !defined(MODULE_AT86RFR2) /* don't populate masked interrupt flags to IRQ_STATUS register */ tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_CTRL_1); tmp &= ~(AT86RF2XX_TRX_CTRL_1_MASK__IRQ_MASK_MODE); at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_CTRL_1, tmp); #endif /* configure smart idle listening feature */ at86rf2xx_enable_smart_idle(dev); /* disable clock output to save power */ at86rf2xx_disable_clock_output(dev); /* enable interrupts */ at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, AT86RF2XX_IRQ_STATUS_MASK__TRX_END); /* enable TX start interrupt for retry counter */ #ifdef AT86RF2XX_REG__IRQ_MASK1 at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK1, AT86RF2XX_IRQ_STATUS_MASK1__TX_START); #endif /* clear interrupt flags */ at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_STATUS); #if IS_USED(MODULE_IEEE802154_SECURITY) && \ IS_USED(MODULE_AT86RF2XX_AES_SPI) dev->netdev.sec_ctx.dev.cipher_ops = &_at86rf2xx_cipher_ops; dev->netdev.sec_ctx.dev.ctx = dev; #endif /* State to return after receiving or transmitting */ dev->idle_state = AT86RF2XX_PHY_STATE_RX; /* go into RX state */ at86rf2xx_set_state(dev, AT86RF2XX_PHY_STATE_RX); /* Enable RX start IRQ */ tmp = at86rf2xx_reg_read(dev, AT86RF2XX_REG__IRQ_MASK); tmp |= AT86RF2XX_IRQ_STATUS_MASK__RX_START; at86rf2xx_reg_write(dev, AT86RF2XX_REG__IRQ_MASK, tmp); DEBUG("at86rf2xx_reset(): reset complete.\n"); } size_t at86rf2xx_send(at86rf2xx_t *dev, const uint8_t *data, size_t len) { /* check data length */ if (len > AT86RF2XX_MAX_PKT_LENGTH) { DEBUG("[at86rf2xx] Error: data to send exceeds max packet size\n"); return 0; } at86rf2xx_tx_prepare(dev); at86rf2xx_tx_load(dev, data, len, 0); at86rf2xx_tx_exec(dev); return len; } void at86rf2xx_tx_prepare(at86rf2xx_t *dev) { uint8_t state; dev->pending_tx++; state = at86rf2xx_set_state(dev, AT86RF2XX_PHY_STATE_TX); if (state != AT86RF2XX_PHY_STATE_TX) { dev->idle_state = state; } dev->tx_frame_len = IEEE802154_FCS_LEN; } size_t at86rf2xx_tx_load(at86rf2xx_t *dev, const uint8_t *data, size_t len, size_t offset) { dev->tx_frame_len += (uint8_t)len; at86rf2xx_sram_write(dev, offset + 1, data, len); return offset + len; } void at86rf2xx_tx_exec(at86rf2xx_t *dev) { netdev_t *netdev = &dev->netdev.netdev; #if AT86RF2XX_HAVE_RETRIES dev->tx_retries = -1; #endif /* write frame length field in FIFO */ at86rf2xx_sram_write(dev, 0, &(dev->tx_frame_len), 1); /* trigger sending of pre-loaded frame */ at86rf2xx_reg_write(dev, AT86RF2XX_REG__TRX_STATE, AT86RF2XX_TRX_STATE__TX_START); if (netdev->event_callback) { netdev->event_callback(netdev, NETDEV_EVENT_TX_STARTED); } } bool at86rf2xx_cca(at86rf2xx_t *dev) { uint8_t reg; uint8_t old_state = at86rf2xx_set_state(dev, AT86RF2XX_STATE_TRX_OFF); /* Disable RX path */ uint8_t rx_syn = at86rf2xx_reg_read(dev, AT86RF2XX_REG__RX_SYN); reg = rx_syn | AT86RF2XX_RX_SYN__RX_PDT_DIS; at86rf2xx_reg_write(dev, AT86RF2XX_REG__RX_SYN, reg); /* Manually triggered CCA is only possible in RX_ON (basic operating mode) */ at86rf2xx_set_state(dev, AT86RF2XX_STATE_RX_ON); /* Perform CCA */ reg = at86rf2xx_reg_read(dev, AT86RF2XX_REG__PHY_CC_CCA); reg |= AT86RF2XX_PHY_CC_CCA_MASK__CCA_REQUEST; at86rf2xx_reg_write(dev, AT86RF2XX_REG__PHY_CC_CCA, reg); /* Spin until done (8 symbols + 12 µs = 128 µs + 12 µs for O-QPSK)*/ do { reg = at86rf2xx_reg_read(dev, AT86RF2XX_REG__TRX_STATUS); } while ((reg & AT86RF2XX_TRX_STATUS_MASK__CCA_DONE) == 0); /* return true if channel is clear */ bool ret = !!(reg & AT86RF2XX_TRX_STATUS_MASK__CCA_STATUS); /* re-enable RX */ at86rf2xx_reg_write(dev, AT86RF2XX_REG__RX_SYN, rx_syn); /* Step back to the old state */ at86rf2xx_set_state(dev, AT86RF2XX_STATE_TRX_OFF); at86rf2xx_set_state(dev, old_state); return ret; }