/** * hardware timer abstraction * * Copyright (C) 2013 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License. See the file LICENSE in the top level directory for more * details. * * @ingroup kernel * @{ * @file * @author Heiko Will * @author Thomas Hillebrandt * @author Kaspar Schleiser * @author Oliver Hahm * @} */ #include #include "kernel.h" #include "thread.h" #include "lifo.h" #include "mutex.h" #include "hwtimer.h" #include "hwtimer_cpu.h" #include "hwtimer_arch.h" /*---------------------------------------------------------------------------*/ typedef struct hwtimer_t { void (*callback)(void*); void *data; } hwtimer_t; static hwtimer_t timer[ARCH_MAXTIMERS]; static int lifo[ARCH_MAXTIMERS + 1]; /*---------------------------------------------------------------------------*/ static void multiplexer(int source) { lifo_insert(lifo, source); lpm_prevent_sleep--; timer[source].callback(timer[source].data); } static void hwtimer_releasemutex(void* mutex) { mutex_unlock((mutex_t*) mutex); } void hwtimer_spin(unsigned long ticks) { unsigned long t = hwtimer_arch_now(); /** * If hwtimer_arch_now + ticks results in an overflow, * hwtimer_arch_now needs to spin until it has overflowed as well. * * If the destination time will result in an overflow, the result * is smaller than ticks by at least one. */ if (t + ticks < ticks) { while (hwtimer_arch_now() > t); } /** * set t to destination time, possibly overflowing it */ t += ticks; /** * wait until the present has past destination time t */ while (hwtimer_arch_now() < t); } /*---------------------------------------------------------------------------*/ void hwtimer_init(void) { hwtimer_init_comp(F_CPU); } /*---------------------------------------------------------------------------*/ void hwtimer_init_comp(uint32_t fcpu) { hwtimer_arch_init(multiplexer, fcpu); lifo_init(lifo, ARCH_MAXTIMERS); for (int i = 0; i < ARCH_MAXTIMERS; i++) { lifo_insert(lifo, i); } } /*---------------------------------------------------------------------------*/ int hwtimer_active(void) { return (!lifo_empty(lifo)); } /*---------------------------------------------------------------------------*/ unsigned long hwtimer_now(void) { return hwtimer_arch_now(); } /*---------------------------------------------------------------------------*/ void hwtimer_wait(unsigned long ticks) { mutex_t mutex; if (ticks <= 6 || inISR()) { hwtimer_spin(ticks); return; } mutex_init(&mutex); mutex_lock(&mutex); /* -2 is to adjust the real value */ int res = hwtimer_set(ticks - 2, hwtimer_releasemutex, &mutex); if (res == -1) { mutex_unlock(&mutex); hwtimer_spin(ticks); return; } /* try to lock mutex again will cause the thread to go into * STATUS_MUTEX_BLOCKED until hwtimer fires the releasemutex */ mutex_lock(&mutex); } /*---------------------------------------------------------------------------*/ static int _hwtimer_set(unsigned long offset, void (*callback)(void*), void *ptr, bool absolute) { if (!inISR()) { dINT(); } int n = lifo_get(lifo); if (n == -1) { if (!inISR()) { eINT(); } puts("No hwtimer left."); return -1; } timer[n].callback = callback; timer[n].data = ptr; if (absolute) { hwtimer_arch_set_absolute(offset, n); } else { hwtimer_arch_set(offset, n); } lpm_prevent_sleep++; if (!inISR()) { eINT(); } return n; } int hwtimer_set(unsigned long offset, void (*callback)(void*), void *ptr) { return _hwtimer_set(offset, callback, ptr, false); } int hwtimer_set_absolute(unsigned long offset, void (*callback)(void*), void *ptr) { return _hwtimer_set(offset, callback, ptr, true); } /*---------------------------------------------------------------------------*/ int hwtimer_remove(int n) { hwtimer_arch_disable_interrupt(); hwtimer_arch_unset(n); lifo_insert(lifo, n); timer[n].callback = NULL; lpm_prevent_sleep--; hwtimer_arch_enable_interrupt(); return 1; }