/* * Copyright (C) 2016 OTA keys S.A. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @{ * * @file */ #include #include #include "embUnit.h" #include "mtd.h" #include "board.h" #if MODULE_VFS #include #include #include "vfs.h" #endif /* Define MTD_0 in board.h to use the board mtd if any */ #ifdef MTD_0 #define dev (MTD_0) #else /* Test mock object implementing a simple RAM-based mtd */ #ifndef SECTOR_COUNT #define SECTOR_COUNT 4 #endif #ifndef PAGE_PER_SECTOR #define PAGE_PER_SECTOR 4 #endif #ifndef PAGE_SIZE #define PAGE_SIZE 128 #endif static uint8_t dummy_memory[PAGE_PER_SECTOR * PAGE_SIZE * SECTOR_COUNT]; static int init(mtd_dev_t *dev) { (void)dev; memset(dummy_memory, 0xff, sizeof(dummy_memory)); return 0; } static int read(mtd_dev_t *dev, void *buff, uint32_t addr, uint32_t size) { (void)dev; if (addr + size > sizeof(dummy_memory)) { return -EOVERFLOW; } memcpy(buff, dummy_memory + addr, size); return size; } static int write(mtd_dev_t *dev, const void *buff, uint32_t addr, uint32_t size) { (void)dev; if (addr + size > sizeof(dummy_memory)) { return -EOVERFLOW; } if (((addr % PAGE_SIZE) + size) > PAGE_SIZE) { return -EOVERFLOW; } memcpy(dummy_memory + addr, buff, size); return size; } static int erase(mtd_dev_t *dev, uint32_t addr, uint32_t size) { (void)dev; if (size % (PAGE_PER_SECTOR * PAGE_SIZE) != 0) { return -EOVERFLOW; } if (addr % (PAGE_PER_SECTOR * PAGE_SIZE) != 0) { return -EOVERFLOW; } if (addr + size > sizeof(dummy_memory)) { return -EOVERFLOW; } memset(dummy_memory + addr, 0xff, size); return 0; } static int power(mtd_dev_t *dev, enum mtd_power_state power) { (void)dev; (void)power; return 0; } static const mtd_desc_t driver = { .init = init, .read = read, .write = write, .erase = erase, .power = power, }; static mtd_dev_t _dev = { .driver = &driver, .sector_count = SECTOR_COUNT, .pages_per_sector = PAGE_PER_SECTOR, .page_size = PAGE_SIZE, }; static mtd_dev_t *dev = (mtd_dev_t*) &_dev; #endif /* MTD_0 */ static void setup_teardown(void) { mtd_erase(dev, 0, dev->pages_per_sector * dev->page_size); } static void test_mtd_init(void) { int ret = mtd_init(dev); TEST_ASSERT_EQUAL_INT(0, ret); } static void test_mtd_erase(void) { /* Erase first sector */ int ret = mtd_erase(dev, 0, dev->pages_per_sector * dev->page_size); TEST_ASSERT_EQUAL_INT(0, ret); /* Erase with wrong size (les than sector size) */ ret = mtd_erase(dev, 0, dev->page_size); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); /* Unaligned erase */ ret = mtd_erase(dev, dev->page_size, dev->page_size); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); /* Erase 2nd - 3rd sector */ ret = mtd_erase(dev, dev->pages_per_sector * dev->page_size, dev->pages_per_sector * dev->page_size * 2); TEST_ASSERT_EQUAL_INT(0, ret); /* Erase out of memory area */ ret = mtd_erase(dev, dev->pages_per_sector * dev->page_size * dev->sector_count, dev->pages_per_sector * dev->page_size); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); } static void test_mtd_write_erase(void) { const char buf[] = "ABCDEFGHIJK"; uint8_t buf_empty[] = {0xff, 0xff, 0xff}; char buf_read[sizeof(buf) + sizeof(buf_empty)]; memset(buf_read, 0, sizeof(buf_read)); int ret = mtd_write(dev, buf, sizeof(buf_empty), sizeof(buf)); TEST_ASSERT_EQUAL_INT(sizeof(buf), ret); ret = mtd_erase(dev, 0, dev->pages_per_sector * dev->page_size); TEST_ASSERT_EQUAL_INT(0, ret); uint8_t expected[sizeof(buf_read)]; memset(expected, 0xff, sizeof(expected)); ret = mtd_read(dev, buf_read, 0, sizeof(buf_read)); TEST_ASSERT_EQUAL_INT(sizeof(buf_read), ret); TEST_ASSERT_EQUAL_INT(0, memcmp(expected, buf_read, sizeof(buf_read))); } static void test_mtd_write_read(void) { const char buf[] = "ABCDEFGH"; uint8_t buf_empty[] = {0xff, 0xff, 0xff}; char buf_read[sizeof(buf) + sizeof(buf_empty)]; memset(buf_read, 0, sizeof(buf_read)); /* Basic write / read */ int ret = mtd_write(dev, buf, 0, sizeof(buf)); TEST_ASSERT_EQUAL_INT(sizeof(buf), ret); ret = mtd_read(dev, buf_read, 0, sizeof(buf_read)); TEST_ASSERT_EQUAL_INT(sizeof(buf_read), ret); TEST_ASSERT_EQUAL_INT(0, memcmp(buf, buf_read, sizeof(buf))); TEST_ASSERT_EQUAL_INT(0, memcmp(buf_empty, buf_read + sizeof(buf), sizeof(buf_empty))); /* Unaligned write / read */ ret = mtd_write(dev, buf, dev->page_size + sizeof(buf_empty), sizeof(buf)); TEST_ASSERT_EQUAL_INT(sizeof(buf), ret); ret = mtd_read(dev, buf_read, dev->page_size, sizeof(buf_read)); TEST_ASSERT_EQUAL_INT(sizeof(buf_read), ret); TEST_ASSERT_EQUAL_INT(0, memcmp(buf_empty, buf_read, sizeof(buf_empty))); TEST_ASSERT_EQUAL_INT(0, memcmp(buf, buf_read + sizeof(buf_empty), sizeof(buf))); /* out of bounds write (addr) */ ret = mtd_write(dev, buf, dev->pages_per_sector * dev->page_size * dev->sector_count, sizeof(buf)); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); /* out of bounds write (addr + count) */ ret = mtd_write(dev, buf, (dev->pages_per_sector * dev->page_size * dev->sector_count) - (sizeof(buf) / 2), sizeof(buf)); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); /* out of bounds write (more than page size) */ const size_t page_size = dev->page_size; const uint8_t buf_page[page_size + 1]; ret = mtd_write(dev, buf_page, 0, sizeof(buf_page)); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); /* pages overlap write */ ret = mtd_write(dev, buf, dev->page_size - (sizeof(buf) / 2), sizeof(buf)); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); ret = mtd_write(dev, buf_page, 1, sizeof(buf_page) - 1); TEST_ASSERT_EQUAL_INT(-EOVERFLOW, ret); } #ifdef MTD_0 static void test_mtd_write_read_flash(void) { const uint8_t buf1[] = {0xee, 0xdd, 0xcc}; const uint8_t buf2[] = {0x33, 0x33, 0x33}; const uint8_t buf_expected[] = {0x22, 0x11, 0x0}; uint8_t buf_empty[] = {0xff, 0xff, 0xff}; char buf_read[sizeof(buf_expected) + sizeof(buf_empty)]; memset(buf_read, 0, sizeof(buf_read)); /* Test flash AND behavior. This test will fail if the mtd is not a flash */ /* Basic write / read */ int ret = mtd_write(dev, buf1, 0, sizeof(buf1)); TEST_ASSERT_EQUAL_INT(sizeof(buf1), ret); ret = mtd_write(dev, buf2, 0, sizeof(buf2)); TEST_ASSERT_EQUAL_INT(sizeof(buf2), ret); ret = mtd_read(dev, buf_read, 0, sizeof(buf_read)); TEST_ASSERT_EQUAL_INT(sizeof(buf_read), ret); TEST_ASSERT_EQUAL_INT(0, memcmp(buf_expected, buf_read, sizeof(buf_expected))); TEST_ASSERT_EQUAL_INT(0, memcmp(buf_empty, buf_read + sizeof(buf_expected), sizeof(buf_empty))); } #endif #if MODULE_VFS static void test_mtd_vfs(void) { int fd; fd = vfs_bind(VFS_ANY_FD, O_RDWR, &mtd_vfs_ops, dev); const char buf[] = "mnopqrst"; uint8_t buf_empty[] = {0xff, 0xff, 0xff}; char buf_read[sizeof(buf) + sizeof(buf_empty)]; memset(buf_read, 0, sizeof(buf_read)); int ret = vfs_lseek(fd, sizeof(buf_empty), SEEK_SET); TEST_ASSERT_EQUAL_INT(sizeof(buf_empty), ret); ret = vfs_write(fd, buf, sizeof(buf)); TEST_ASSERT_EQUAL_INT(sizeof(buf), ret); ret = vfs_lseek(fd, 0, SEEK_SET); TEST_ASSERT_EQUAL_INT(0, ret); ret = vfs_read(fd, buf_read, sizeof(buf_read)); TEST_ASSERT_EQUAL_INT(sizeof(buf_read), ret); TEST_ASSERT_EQUAL_INT(0, memcmp(buf_empty, buf_read, sizeof(buf_empty))); TEST_ASSERT_EQUAL_INT(0, memcmp(buf, buf_read + sizeof(buf_empty), sizeof(buf))); ret = vfs_lseek(fd, 0, SEEK_END); TEST_ASSERT(ret > 0); ret = vfs_write(fd, buf, sizeof(buf)); /* Attempted to write past the device memory */ TEST_ASSERT(ret < 0); } #endif Test *tests_mtd_tests(void) { EMB_UNIT_TESTFIXTURES(fixtures) { new_TestFixture(test_mtd_init), new_TestFixture(test_mtd_erase), new_TestFixture(test_mtd_write_erase), new_TestFixture(test_mtd_write_read), #ifdef MTD_0 new_TestFixture(test_mtd_write_read_flash), #endif #if MODULE_VFS new_TestFixture(test_mtd_vfs), #endif }; EMB_UNIT_TESTCALLER(mtd_tests, setup_teardown, setup_teardown, fixtures); return (Test *)&mtd_tests; } void tests_mtd(void) { TESTS_RUN(tests_mtd_tests()); } /** @} */