/* * Copyright (C) 2016 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_sam0_common * @brief Common CPU specific definitions for all SAMx21 based CPUs * @{ * * @file * @brief Common CPU specific definitions for all SAMx21 based CPUs * * @author Hauke Petersen * @author Dylan Laduranty */ #ifndef PERIPH_CPU_COMMON_H #define PERIPH_CPU_COMMON_H #include "cpu.h" #include "exti_config.h" #include "timer_config.h" #ifdef __cplusplus extern "C" { #endif /** * @brief Length of the CPU_ID in octets */ #define CPUID_LEN (16U) /** * @brief Use shared SPI functions * @{ */ #define PERIPH_SPI_NEEDS_INIT_CS #define PERIPH_SPI_NEEDS_TRANSFER_BYTE #ifndef MODULE_PERIPH_DMA #define PERIPH_SPI_NEEDS_TRANSFER_REG #define PERIPH_SPI_NEEDS_TRANSFER_REGS #endif /** @} */ /** * @name Use shared I2C functions * @{ */ #define PERIPH_I2C_NEED_READ_REG #define PERIPH_I2C_NEED_READ_REGS #define PERIPH_I2C_NEED_WRITE_REG #define PERIPH_I2C_NEED_WRITE_REGS /** @} */ /** * @brief Override GPIO type * @{ */ #define HAVE_GPIO_T typedef uint32_t gpio_t; /** @} */ /** * @brief Definition of a fitting UNDEF value */ #define GPIO_UNDEF (0xffffffff) /** * @brief Macro for accessing GPIO pins * @{ */ #ifdef CPU_FAM_SAML11 #define GPIO_PIN(x, y) (((gpio_t)(&PORT_SEC->Group[x])) | y) #elif defined(PORT_IOBUS) /* Use IOBUS access when available */ #define GPIO_PIN(x, y) (((gpio_t)(&PORT_IOBUS->Group[x])) | y) #else #define GPIO_PIN(x, y) (((gpio_t)(&PORT->Group[x])) | y) #endif /** * @brief Available ports on the SAMD21 & SAML21 */ enum { PA = 0, /**< port A */ PB = 1, /**< port B */ PC = 2, /**< port C */ PD = 3, /**< port D */ }; /** * @brief Generate GPIO mode bitfields * * We use 3 bit to determine the pin functions: * - bit 0: PD(0) or PU(1) * - bit 1: input enable * - bit 2: pull enable */ #define GPIO_MODE(pr, ie, pe) (pr | (ie << 1) | (pe << 2)) #ifndef DOXYGEN /** * @brief Override GPIO modes */ #define HAVE_GPIO_MODE_T typedef enum { GPIO_IN = GPIO_MODE(0, 1, 0), /**< IN */ GPIO_IN_PD = GPIO_MODE(0, 1, 1), /**< IN with pull-down */ GPIO_IN_PU = GPIO_MODE(1, 1, 1), /**< IN with pull-up */ GPIO_OUT = GPIO_MODE(0, 0, 0), /**< OUT (push-pull) */ GPIO_OD = 0xfe, /**< not supported by HW */ GPIO_OD_PU = 0xff /**< not supported by HW */ } gpio_mode_t; /** * @brief Override active flank configuration values * @{ */ #define HAVE_GPIO_FLANK_T typedef enum { GPIO_FALLING = 2, /**< emit interrupt on falling flank */ GPIO_RISING = 1, /**< emit interrupt on rising flank */ GPIO_BOTH = 3 /**< emit interrupt on both flanks */ } gpio_flank_t; /** @} */ #endif /* ndef DOXYGEN */ /** * @brief Available MUX values for configuring a pin's alternate function */ #ifndef SAM_MUX_T typedef enum { GPIO_MUX_A = 0x0, /**< select peripheral function A */ GPIO_MUX_B = 0x1, /**< select peripheral function B */ GPIO_MUX_C = 0x2, /**< select peripheral function C */ GPIO_MUX_D = 0x3, /**< select peripheral function D */ GPIO_MUX_E = 0x4, /**< select peripheral function E */ GPIO_MUX_F = 0x5, /**< select peripheral function F */ GPIO_MUX_G = 0x6, /**< select peripheral function G */ GPIO_MUX_H = 0x7, /**< select peripheral function H */ } gpio_mux_t; #endif /** * @brief Available values for SERCOM UART RX pad selection */ typedef enum { UART_PAD_RX_0 = 0x0, /**< use pad 0 for RX line */ UART_PAD_RX_1 = 0x1, /**< select pad 1 */ UART_PAD_RX_2 = 0x2, /**< select pad 2 */ UART_PAD_RX_3 = 0x3, /**< select pad 3 */ } uart_rxpad_t; /** * @brief Available values for SERCOM UART TX pad selection */ typedef enum { UART_PAD_TX_0 = 0x0, /**< select pad 0 */ UART_PAD_TX_2 = 0x1, /**< select pad 2 */ UART_PAD_TX_0_RTS_2_CTS_3 = 0x2, /**< TX is pad 0, on top RTS on pad 2 * and CTS on pad 3 */ } uart_txpad_t; /** * @brief Available SERCOM UART flag selections */ typedef enum { UART_FLAG_NONE = 0x0, /**< No flags set */ UART_FLAG_RUN_STANDBY = 0x1, /**< run SERCOM in standby mode */ UART_FLAG_WAKEUP = 0x2, /**< wake from sleep on receive */ UART_FLAG_RXINV = 0x4, /**< invert RX signal */ UART_FLAG_TXINV = 0x8, /**< invert TX signal */ } uart_flag_t; #ifndef DOXYGEN /** * @brief Available SERCOM UART data size selections * * 9 bit UART mode is currently unavailable as it is not supported by the common * RIOT UART peripheral API. * @{ */ #define HAVE_UART_DATA_BITS_T typedef enum { UART_DATA_BITS_5 = 0x5, /**< 5 data bits */ UART_DATA_BITS_6 = 0x6, /**< 6 data bits */ UART_DATA_BITS_7 = 0x7, /**< 7 data bits */ UART_DATA_BITS_8 = 0x0, /**< 8 data bits */ } uart_data_bits_t; /** @} */ /** * @brief UART pin getters * @{ */ #define uart_pin_rx(dev) uart_config[dev].rx_pin #define uart_pin_tx(dev) uart_config[dev].tx_pin /** @} */ #endif /* ndef DOXYGEN */ /** * @brief Size of the UART TX buffer for non-blocking mode. */ #ifndef UART_TXBUF_SIZE #define UART_TXBUF_SIZE (64) #endif /** * @brief UART device configuration * * The frequency f() of the clock `gclk_src` must fulfill the condition * * 16 * baud < f(gclk_src) ≤ 2²⁰ * baud * * in Asynchronous Arithmetic mode and * * 16 * baud < f(gclk_src) ≤ 2¹⁷ * baud * * in Asynchronous Fractional mode */ typedef struct { SercomUsart *dev; /**< pointer to the used UART device */ gpio_t rx_pin; /**< pin used for RX */ gpio_t tx_pin; /**< pin used for TX */ #ifdef MODULE_PERIPH_UART_HW_FC gpio_t rts_pin; /**< pin used for RTS */ gpio_t cts_pin; /**< pin used for CTS */ #endif gpio_mux_t mux; /**< alternative function for pins */ uart_rxpad_t rx_pad; /**< pad selection for RX line */ uart_txpad_t tx_pad; /**< pad selection for TX line */ uart_flag_t flags; /**< set optional SERCOM flags */ uint8_t gclk_src; /**< GCLK source which supplys SERCOM */ } uart_conf_t; enum { TIMER_TYPE_TC, /**< Timer is a TC timer */ TIMER_TYPE_TCC, /**< Timer is a TCC timer */ }; /** * @brief Common configuration for timer devices */ typedef struct { union { #ifdef REV_TC Tc *tc; /**< TC device to use */ #endif #ifdef REV_TCC Tcc *tcc; /**< TCC device to use */ #endif } dev; /**< The Timer device used for PWM */ #ifdef MCLK volatile uint32_t *mclk; /**< Pointer to MCLK->APBxMASK.reg */ uint32_t mclk_mask; /**< MCLK_APBxMASK bits to enable Timer */ #else uint32_t pm_mask; /**< PM_APBCMASK bits to enable Timer */ #endif uint16_t gclk_id; /**< TCn_GCLK_ID */ uint8_t type; /**< Timer type (TC/TCC) */ } tc_tcc_cfg_t; /** * @brief Static initializer for TC timer configuration */ #ifdef MCLK #define TC_CONFIG(tim) { \ .dev = {.tc = tim}, \ .mclk = MCLK_ ## tim, \ .mclk_mask = MCLK_ ## tim ## _MASK, \ .gclk_id = tim ## _GCLK_ID, \ .type = TIMER_TYPE_TC, } #else #define TC_CONFIG(tim) { \ .dev = {.tc = tim}, \ .pm_mask = PM_APBCMASK_ ## tim, \ .gclk_id = tim ## _GCLK_ID, \ .type = TIMER_TYPE_TC, } #endif /** * @brief Static initializer for TCC timer configuration */ #ifdef MCLK #define TCC_CONFIG(tim) { \ .dev = {.tcc = tim}, \ .mclk = MCLK_ ## tim, \ .mclk_mask = MCLK_ ## tim ## _MASK, \ .gclk_id = tim ## _GCLK_ID, \ .type = TIMER_TYPE_TCC, } #else #define TCC_CONFIG(tim) { \ .dev = {.tcc = tim}, \ .pm_mask = PM_APBCMASK_ ## tim, \ .gclk_id = tim ## _GCLK_ID, \ .type = TIMER_TYPE_TCC, } #endif /** * @brief PWM channel configuration data structure */ typedef struct { gpio_t pin; /**< GPIO pin */ gpio_mux_t mux; /**< pin function multiplex value */ uint8_t chan; /**< TCC channel to use */ } pwm_conf_chan_t; /** * @brief PWM device configuration data structure */ typedef struct { tc_tcc_cfg_t tim; /**< timer configuration */ const pwm_conf_chan_t *chan; /**< channel configuration */ uint8_t chan_numof; /**< number of channels */ uint8_t gclk_src; /**< GCLK source which clocks TIMER */ } pwm_conf_t; /** * @brief Available values for SERCOM SPI MISO pad selection */ typedef enum { SPI_PAD_MISO_0 = 0x0, /**< use pad 0 for MISO line */ SPI_PAD_MISO_1 = 0x1, /**< use pad 0 for MISO line */ SPI_PAD_MISO_2 = 0x2, /**< use pad 0 for MISO line */ SPI_PAD_MISO_3 = 0x3, /**< use pad 0 for MISO line */ } spi_misopad_t; /** * @brief Available values for SERCOM SPI MOSI and SCK pad selection */ typedef enum { SPI_PAD_MOSI_0_SCK_1 = 0x0, /**< use pad 0 for MOSI, pad 1 for SCK */ SPI_PAD_MOSI_2_SCK_3 = 0x1, /**< use pad 2 for MOSI, pad 3 for SCK */ SPI_PAD_MOSI_3_SCK_1 = 0x2, /**< use pad 3 for MOSI, pad 1 for SCK */ SPI_PAD_MOSI_0_SCK_3 = 0x3, /**< use pad 0 for MOSI, pad 3 for SCK */ } spi_mosipad_t; #ifndef DOXYGEN /** * @brief Override SPI modes * @{ */ #define HAVE_SPI_MODE_T typedef enum { SPI_MODE_0 = 0x0, /**< CPOL=0, CPHA=0 */ SPI_MODE_1 = 0x1, /**< CPOL=0, CPHA=1 */ SPI_MODE_2 = 0x2, /**< CPOL=1, CPHA=0 */ SPI_MODE_3 = 0x3 /**< CPOL=1, CPHA=1 */ } spi_mode_t; /** @} */ /** * @brief Override SPI clock speed values * @{ */ #define HAVE_SPI_CLK_T typedef enum { SPI_CLK_100KHZ = 100000U, /**< drive the SPI bus with 100KHz */ SPI_CLK_400KHZ = 400000U, /**< drive the SPI bus with 400KHz */ SPI_CLK_1MHZ = 1000000U, /**< drive the SPI bus with 1MHz */ SPI_CLK_5MHZ = 5000000U, /**< drive the SPI bus with 5MHz */ SPI_CLK_10MHZ = 10000000U /**< drive the SPI bus with 10MHz */ } spi_clk_t; /** @} */ /** * @brief SPI pin getters * @{ */ #define spi_pin_mosi(dev) spi_config[dev].mosi_pin #define spi_pin_miso(dev) spi_config[dev].miso_pin #define spi_pin_clk(dev) spi_config[dev].clk_pin /** @} */ #endif /* ndef DOXYGEN */ /** * @brief SPI device configuration */ typedef struct { SercomSpi *dev; /**< pointer to the used SPI device */ gpio_t miso_pin; /**< used MISO pin */ gpio_t mosi_pin; /**< used MOSI pin */ gpio_t clk_pin; /**< used CLK pin */ gpio_mux_t miso_mux; /**< alternate function for MISO pin (mux) */ gpio_mux_t mosi_mux; /**< alternate function for MOSI pin (mux) */ gpio_mux_t clk_mux; /**< alternate function for CLK pin (mux) */ spi_misopad_t miso_pad; /**< pad to use for MISO line */ spi_mosipad_t mosi_pad; /**< pad to use for MOSI and CLK line */ uint8_t gclk_src; /**< GCLK source which supplys SERCOM */ #ifdef MODULE_PERIPH_DMA uint8_t tx_trigger; /**< DMA trigger */ uint8_t rx_trigger; /**< DMA trigger */ #endif } spi_conf_t; /** @} */ /** * @brief Available SERCOM I2C flag selections */ typedef enum { I2C_FLAG_NONE = 0x0, /**< No flags set */ I2C_FLAG_RUN_STANDBY = 0x1, /**< run SERCOM in standby mode */ } i2c_flag_t; #ifndef DOXYGEN /** * @name Override I2C clock speed values * @{ */ #define HAVE_I2C_SPEED_T typedef enum { I2C_SPEED_LOW = 10000U, /**< low speed mode: ~10kbit/s */ I2C_SPEED_NORMAL = 100000U, /**< normal mode: ~100kbit/s */ I2C_SPEED_FAST = 400000U, /**< fast mode: ~400kbit/s */ I2C_SPEED_FAST_PLUS = 1000000U, /**< fast plus mode: ~1Mbit/s */ I2C_SPEED_HIGH = 3400000U, /**< high speed mode: ~3.4Mbit/s */ } i2c_speed_t; /** @} */ /** * @name I2C pin getter functions * @{ */ #define i2c_pin_sda(dev) i2c_config[dev].sda_pin #define i2c_pin_scl(dev) i2c_config[dev].scl_pin /** @} */ #endif /* ndef DOXYGEN */ /** * @brief I2C device configuration * The frequency f() of the clock `gclk_src` must fulfill the condition * * 4 * speed ≤ f(gclk_src) ≤ 512 * speed * * if speed ≤ 1 MHz and * * 12 * speed ≤ f(gclk_src) ≤ 520 * speed * * if speed > 1 MHz */ typedef struct { SercomI2cm *dev; /**< pointer to the used I2C device */ i2c_speed_t speed; /**< baudrate used for the bus */ gpio_t scl_pin; /**< used SCL pin */ gpio_t sda_pin; /**< used MOSI pin */ gpio_mux_t mux; /**< alternate function (mux) */ uint8_t gclk_src; /**< GCLK source which supplys SERCOM */ uint8_t flags; /**< allow SERCOM to run in standby mode */ } i2c_conf_t; /** * @brief Timer device configuration */ typedef struct { Tc *dev; /**< pointer to the used Timer device */ IRQn_Type irq; /**< IRQ# of Timer Interrupt */ #ifdef MCLK volatile uint32_t *mclk;/**< Pointer to MCLK->APBxMASK.reg */ uint32_t mclk_mask; /**< MCLK_APBxMASK bits to enable Timer */ uint16_t gclk_id; /**< TCn_GCLK_ID */ #else uint32_t pm_mask; /**< PM_APBCMASK bits to enable Timer */ uint16_t gclk_ctrl; /**< GCLK_CLKCTRL_ID for the Timer */ #endif uint8_t gclk_src; /**< GCLK source which supplys Timer */ uint16_t flags; /**< flags for CTRA, e.g. TC_CTRLA_MODE_COUNT32 */ } tc32_conf_t; /** * @brief Number of available timer channels */ #define TIMER_CHANNEL_NUMOF (2) /** * @brief Set up alternate function (PMUX setting) for a PORT pin * * @param[in] pin Pin to set the multiplexing for * @param[in] mux Mux value */ void gpio_init_mux(gpio_t pin, gpio_mux_t mux); /** * @brief Called before the power management enters a power mode * * @param[in] deep */ void gpio_pm_cb_enter(int deep); /** * @brief Called after the power management left a power mode * * @param[in] deep */ void gpio_pm_cb_leave(int deep); /** * @brief Called before the power management enters a power mode * * @param[in] deep */ void cpu_pm_cb_enter(int deep); /** * @brief Called after the power management left a power mode * * @param[in] deep */ void cpu_pm_cb_leave(int deep); /** * @brief Wrapper for cortexm_sleep calling power management callbacks * * @param[in] deep */ static inline void sam0_cortexm_sleep(int deep) { #ifdef MODULE_PERIPH_GPIO gpio_pm_cb_enter(deep); #endif cpu_pm_cb_enter(deep); cortexm_sleep(deep); cpu_pm_cb_leave(deep); #ifdef MODULE_PERIPH_GPIO gpio_pm_cb_leave(deep); #endif } /** * @brief Disable alternate function (PMUX setting) for a PORT pin * * @param[in] pin Pin to reset the multiplexing for */ void gpio_disable_mux(gpio_t pin); /** * @brief Available voltage regulators on the supply controller. */ typedef enum { SAM0_VREG_LDO, /*< LDO, always available but not very power efficient */ SAM0_VREG_BUCK /*< Buck converter, efficient but may clash with internal fast clock generators (see errata sheets) */ } sam0_supc_t; /** * @brief Switch the internal voltage regulator used for generating the * internal MCU voltages. * Available options are: * * - LDO: not very efficient, but will always work * - BUCK converter: Most efficient, but incompatible with the * use of DFLL or DPLL. * Please refer to the errata sheet, further restrictions may * apply depending on the MCU. * * @param[in] src */ static inline void sam0_set_voltage_regulator(sam0_supc_t src) { #ifdef REG_SUPC_VREG SUPC->VREG.bit.SEL = src; while (!SUPC->STATUS.bit.VREGRDY) {} #else (void) src; assert(0); #endif } /** * @brief Returns the frequency of a GCLK provider. * * @param[in] id The ID of the GCLK * * @return The frequency of the GCLK with the given ID. */ uint32_t sam0_gclk_freq(uint8_t id); /** * @brief Enables an on-demand GCLK that has been configured in cpu.c * * @param[in] id The ID of the GCLK */ void sam0_gclk_enable(uint8_t id); /** * @brief Return the numeric id of a SERCOM device derived from its address * * @param[in] sercom SERCOM device * * @return numeric id of the given SERCOM device */ static inline uint8_t sercom_id(const void *sercom) { #ifdef SERCOM0 if (sercom == SERCOM0) { return 0; } #endif #ifdef SERCOM1 if (sercom == SERCOM1) { return 1; } #endif #ifdef SERCOM2 if (sercom == SERCOM2) { return 2; } #endif #ifdef SERCOM3 if (sercom == SERCOM3) { return 3; } #endif #ifdef SERCOM4 if (sercom == SERCOM4) { return 4; } #endif #ifdef SERCOM5 if (sercom == SERCOM5) { return 5; } #endif #ifdef SERCOM6 if (sercom == SERCOM6) { return 6; } #endif #ifdef SERCOM7 if (sercom == SERCOM7) { return 7; } #endif /* should not be reached, so fail with assert */ assert(false); return SERCOM_INST_NUM; } /** * @brief Enable peripheral clock for given SERCOM device * * @param[in] sercom SERCOM device */ static inline void sercom_clk_en(void *sercom) { const uint8_t id = sercom_id(sercom); #if defined(CPU_COMMON_SAMD21) PM->APBCMASK.reg |= (PM_APBCMASK_SERCOM0 << id); #elif defined (CPU_COMMON_SAMD5X) if (id < 2) { MCLK->APBAMASK.reg |= (1 << (id + 12)); } else if (id < 4) { MCLK->APBBMASK.reg |= (1 << (id + 7)); } else { MCLK->APBDMASK.reg |= (1 << (id - 4)); } #else if (id < 5) { MCLK->APBCMASK.reg |= (MCLK_APBCMASK_SERCOM0 << id); } #if defined(CPU_COMMON_SAML21) else { MCLK->APBDMASK.reg |= (MCLK_APBDMASK_SERCOM5); } #endif /* CPU_COMMON_SAML21 */ #endif } /** * @brief Disable peripheral clock for given SERCOM device * * @param[in] sercom SERCOM device */ static inline void sercom_clk_dis(void *sercom) { const uint8_t id = sercom_id(sercom); #if defined(CPU_COMMON_SAMD21) PM->APBCMASK.reg &= ~(PM_APBCMASK_SERCOM0 << id); #elif defined (CPU_COMMON_SAMD5X) if (id < 2) { MCLK->APBAMASK.reg &= ~(1 << (id + 12)); } else if (id < 4) { MCLK->APBBMASK.reg &= ~(1 << (id + 7)); } else { MCLK->APBDMASK.reg &= ~(1 << (id - 4)); } #else if (id < 5) { MCLK->APBCMASK.reg &= ~(MCLK_APBCMASK_SERCOM0 << id); } #if defined (CPU_COMMON_SAML21) else { MCLK->APBDMASK.reg &= ~(MCLK_APBDMASK_SERCOM5); } #endif /* CPU_COMMON_SAML21 */ #endif } #ifdef CPU_COMMON_SAMD5X static inline uint8_t _sercom_gclk_id_core(uint8_t sercom_id) { if (sercom_id < 2) return sercom_id + 7; if (sercom_id < 4) return sercom_id + 21; else return sercom_id + 30; } #endif /** * @brief Configure generator clock for given SERCOM device * * @param[in] sercom SERCOM device * @param[in] gclk Generator clock */ static inline void sercom_set_gen(void *sercom, uint8_t gclk) { const uint8_t id = sercom_id(sercom); sam0_gclk_enable(gclk); #if defined(CPU_COMMON_SAMD21) GCLK->CLKCTRL.reg = (GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN(gclk) | (SERCOM0_GCLK_ID_CORE + id)); while (GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY) {} #elif defined(CPU_COMMON_SAMD5X) GCLK->PCHCTRL[_sercom_gclk_id_core(id)].reg = (GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(gclk)); #else if (id < 5) { GCLK->PCHCTRL[SERCOM0_GCLK_ID_CORE + id].reg = (GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(gclk)); } #if defined(CPU_COMMON_SAML21) else { GCLK->PCHCTRL[SERCOM5_GCLK_ID_CORE].reg = (GCLK_PCHCTRL_CHEN | GCLK_PCHCTRL_GEN(gclk)); } #endif /* CPU_COMMON_SAML21 */ #endif } /** * @brief Returns true if the CPU woke deep sleep (backup/standby) */ static inline bool cpu_woke_from_backup(void) { #ifdef RSTC_RCAUSE_BACKUP return RSTC->RCAUSE.bit.BACKUP; #else return false; #endif } /** * @brief ADC Channel Configuration */ typedef struct { gpio_t pin; /**< ADC channel pin */ uint32_t muxpos; /**< ADC channel pin multiplexer value */ } adc_conf_chan_t; /** * @brief USB peripheral parameters */ #if defined(USB_INST_NUM) || defined(DOXYGEN) typedef struct { gpio_t dm; /**< D- line gpio */ gpio_t dp; /**< D+ line gpio */ gpio_mux_t d_mux; /**< alternate function (mux) for data pins */ UsbDevice *device; /**< ptr to the device registers */ uint8_t gclk_src; /**< GCLK source which supplys 48 MHz */ } sam0_common_usb_config_t; #endif /* USB_INST_NUM */ /** * @name WDT upper and lower bound times in ms * @{ */ /* Limits are in clock cycles according to data sheet. As the WDT is clocked by a 1024 Hz clock, 1 cycle ≈ 1 ms */ #define NWDT_TIME_LOWER_LIMIT (8U) #define NWDT_TIME_UPPER_LIMIT (16384U) /** @} */ /** * @brief Watchdog can be stopped. */ #define WDT_HAS_STOP (1) /** * @brief Watchdog has to be initialized. */ #define WDT_HAS_INIT (1) /** * @name sam0 DMA peripheral * @{ * * The sam0 DMA peripheral has a number of channels. Each channel is a separate * data stream, triggered by a configurable trigger when enabled, or triggered * by software (not yet supported). In theory each DMA channel is equal and can * have a configurable priority and can be triggered by the full set of triggers * available. * * DMA descriptors, specifying a single transfer with size, source and * destination, are kept in RAM and are read when the channel is enabled and * triggered. On the SAML21 platform, these descriptors must reside in the LP * SRAM. * * The DMA addresses supplied must point to the **end** of the array to be * transferred. When address increment is enabled this means that the supplied * src or dst argument must point to array + length. When increment is disabled, * the source or destination address can be used directly. The calculation of * the end of the array must be done by the calling function, because the * beatsize and the increment can usually be hardcoded there and doesn't have to * be retrieved from the DMA register configuration. * See also section 20.6.2.7 of the SAM D21/DA1 Family Data Sheet. * * Example: * ``` * void transfer_data(void *src, void *dst, size_t len) * { * dma_t channel = dma_acquire_channel() * if (channel == 0xff) { * return -E_BUSY; * } * * dma_setup(channel, DMA_TRIGGER_MY_PERIH, 0, true); * dma_prepare(channel, DMAC_BTCTRL_BEATSIZE_BYTE_Val, * (uint8_t*)src + len, (uint8_t*)dst + len, len); * * dma_start(channel); * dma_wait(channel); * * dma_release_channel(channel); * } * ``` */ /** * @brief Indicates that the peripheral doesn't utilize the DMA controller. * Matches with the register configuration for software based triggers. */ #define DMA_TRIGGER_DISABLED 0 /** * @brief Move the DMA descriptors to the LP SRAM. Required on the SAML21 */ #if defined(CPU_COMMON_SAML21) || defined(DOXYGEN) #define DMA_DESCRIPTOR_IN_LPSRAM #endif /** * @brief Extra attributes required for instantiating DMA descriptors. */ #ifdef DMA_DESCRIPTOR_IN_LPSRAM #define DMA_DESCRIPTOR_ATTRS __attribute__((section(".backup.bss"))) #else #define DMA_DESCRIPTOR_ATTRS #endif /** * @brief DMA channel type */ typedef unsigned dma_t; /** * @brief Available DMA address increment modes */ typedef enum { DMA_INCR_NONE = 0, /**< Don't increment any addresses after a beat */ DMA_INCR_SRC = 1, /**< Increment the source address after a beat */ DMA_INCR_DEST = 2, /**< Increment destination address after a beat */ DMA_INCR_BOTH = 3, /**< Increment both addresses after a beat */ } dma_incr_t; /** * @brief Initialize DMA */ void dma_init(void); /** * @brief Acquire a DMA channel. * * A free DMA channel is marked as allocated and a reference is returned. * DMA channels can be acquired for long periods of time, e.g. from the start to * end of a number of transfers or directly at boot and never released. * * @returns A reference to the DMA channel * @returns UINT8_MAX when no DMA channel is available */ dma_t dma_acquire_channel(void); /** * @brief Release a previously acquired DMA channel * * @param dma DMA channel to release */ void dma_release_channel(dma_t dma); /** * @brief Initialize a previously allocated DMA channel with one-time settings * * @param dma DMA channel reference * @param trigger Trigger to use for this DMA channel * @param prio Channel priority * @param irq Whether to enable the interrupt handler for this channel */ void dma_setup(dma_t dma, unsigned trigger, uint8_t prio, bool irq); /** * @brief Prepare the DMA channel for an individual transfer. * * @note When increment is enabled for source or destination, the @p src * and/or @p dst must point to the **end** of the array. * * @param dma DMA channel reference * @param width Transfer beat size to use * @param src Source address for the transfer * @param dst Destination address for the transfer * @param num Number of beats to transfer * @param incr Which of the addresses to increment after a beat */ void dma_prepare(dma_t dma, uint8_t width, const void *src, void *dst, size_t num, dma_incr_t incr); /** * @brief Prepare a transfer without modifying the destination address * settings. * * Can be used when repeatedly using a dma channel to transfer to the same * peripheral address, leaving the destination address and related settings * untouched * * @note This only touches the source address, number of transfers and source * increment settings. Be sure to initialize the full descriptor * beforehand with @ref dma_prepare * * @note When increment is enabled for source, the @p src must point to the * **end** of the array. * * @param dma DMA channel reference * @param src Source address for the transfer * @param num Number of beats to transfer * @param incr Whether to increment the source address after a beat */ void dma_prepare_src(dma_t dma, const void *src, size_t num, bool incr); /** * @brief Prepare a transfer without modifying the source address * settings. * * Can be used when repeatedly using a dma channel to transfer from the same * peripheral address, leaving the source address and related settings * untouched * * @note This only touches the destination address, the number of transfers * and destination increment settings. Be sure to initialize the full * descriptor beforehand with @ref dma_prepare * * @note When increment is enabled for destination, @p dst must point to the * **end** of the array. * * @param dma DMA channel reference * @param dst Destination address for the transfer * @param num Number of beats to transfer * @param incr Whether to increment the destination address after a beat */ void dma_prepare_dst(dma_t dma, void *dst, size_t num, bool incr); /** * @brief Append a second transfer descriptor after the default channel * descriptor. * * @note Only a single extra transfer descriptor is supported for now. * * @note @p next must remain valid throughout the full transfer duration * * @note When increment is enabled for source or destination, @p src * and/or @p dst must point to the **end** of the array. * * @param dma DMA channel reference to add the descriptor to * @param descriptor Extra transfer descriptor to append * @param width Transfer beat size to use * @param src Source address for the transfer * @param dst Destination address for the transfer * @param num Number of beats to transfer * @param incr Which of the addresses to increment after a beat */ void dma_append(dma_t dma, DmacDescriptor *descriptor, uint8_t width, const void *src, void *dst, size_t num, dma_incr_t incr); /** * @brief Append a second transfer descriptor after the default channel * descriptor, copying destination and block size from the initial * descriptor. * * @note Only a single extra transfer descriptor is supported for now. * * @note @p next must remain valid throughout the full transfer duration * * @note When increment is enabled for source, @p src must point to the * **end** of the array. * * @param dma DMA channel reference to add the descriptor to * @param next Extra transfer descriptor to append * @param src Source address for the transfer * @param num Number of beats to transfer * @param incr Whether to increment the source address after a beat */ void dma_append_src(dma_t dma, DmacDescriptor *next, const void *src, size_t num, bool incr); /** * @brief Append a second transfer descriptor after the default channel * descriptor, copying source and block size from the initial * descriptor. * * @note Only a single extra transfer descriptor is supported for now. * * @note @p next must remain valid throughout the full transfer duration * * @note When increment is enabled for destination, @p dst must point to the * **end** of the array. * * @param dma DMA channel reference to add the descriptor to * @param next Extra transfer descriptor to append * @param dst Destination address for the transfer * @param num Number of beats to transfer * @param incr Whether to increment the source address after a beat */ void dma_append_dst(dma_t dma, DmacDescriptor *next, void *dst, size_t num, bool incr); /** * @brief Start a DMA transfer. * * @param dma DMA channel reference */ void dma_start(dma_t dma); /** * @brief Wait for a DMA channel to finish the transfer. * * This function uses a blocking mutex to wait for the transfer to finish * * @note Use only with DMA channels of which the interrupt is enabled * * @param dma DMA channel reference */ void dma_wait(dma_t dma); /** * @brief Cancel an active DMA transfer * * It is not harmful to call this on an inactive channel, but it will waste some * processing time * * @param dma DMA channel reference */ void dma_cancel(dma_t dma); /** @} */ /** * @name sam0 RTC Tamper Detection * @{ */ /** * @brief Power on the RTC (if the RTC/RTT is not otherwise used) */ void rtc_tamper_init(void); /** * @brief Enable Tamper Detection IRQs * * @param pin The GPIO pin to be used for tamper detection * @param flank The Flank to trigger the even * * @return 0 on success, -1 if pin is not RTC pin */ int rtc_tamper_register(gpio_t pin, gpio_flank_t flank); /** * @brief Enable Tamper Detection IRQs */ void rtc_tamper_enable(void); /** @} */ /** * @name sam0 User Configuration * * The MCUs of this family contain a region of memory that is used to store * CPU configuration & calibration data. * It can be used to set persistent settings and has some additional space * to store user configuration data. * @{ */ /** * @brief MCU configuration applied on start. The contents of this struct differ * between families. */ typedef struct sam0_aux_cfg_mapping nvm_user_page_t; /** * @brief Size of the free to use auxiliary area in the user page */ #ifdef FLASH_USER_PAGE_SIZE #define FLASH_USER_PAGE_AUX_SIZE (FLASH_USER_PAGE_SIZE - sizeof(nvm_user_page_t)) #else #define FLASH_USER_PAGE_AUX_SIZE (AUX_PAGE_SIZE * AUX_NB_OF_PAGES - sizeof(nvm_user_page_t)) #endif /** * @brief Reset the configuration area, apply a new configuration. * * * @param cfg New MCU configuration, may be NULL. * If cfg is NULL, this will clear the configuration area * and apply the current configuration again. */ void sam0_flashpage_aux_reset(const nvm_user_page_t *cfg); /** * @brief Write data to the user configuration area. * This will write data to the remaining space after @see nvm_user_page_t * The size of this area depends on the MCU family used. * * Will only write bits 1 -> 0. To reset bits to 1, call @see sam0_flashpage_aux_reset * This will reset the whole user area configuration. * * Arbitrary data lengths and offsets are supported. * * @param offset Byte offset after @see nvm_user_page_t * must be less than `FLASH_USER_PAGE_AUX_SIZE` * @param data The data to write * @param len Size of the data */ void sam0_flashpage_aux_write_raw(uint32_t offset, const void *data, size_t len); /** * @brief Get pointer to data in the user configuration area. * * @param offset Byte offset after @see nvm_user_page_t * must be less than `FLASH_USER_PAGE_AUX_SIZE` * @return Pointer to the data in the User Page */ #define sam0_flashpage_aux_get(offset) \ (const void*)((uint8_t*)NVMCTRL_USER + sizeof(nvm_user_page_t) + (offset)) /** * @brief Get pointer to data in the CPU configuration struct * * @return Pointer to the @ref nvm_user_page_t structure */ #define sam0_flashpage_aux_cfg() \ ((const nvm_user_page_t*)NVMCTRL_USER) /** @} */ #ifdef __cplusplus } #endif #endif /* PERIPH_CPU_COMMON_H */ /** @} */