/* * Copyright (C) 2014-2016 Freie Universität Berlin * 2015 Jan Wagner * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_nrf5x_common * @{ * * @file * @brief Implementation of the peripheral timer interface * * @author Christian Kühling * @author Timo Ziegler * @author Hauke Petersen * @author Jan Wagner * * @} */ #include "periph/timer.h" #define F_TIMER (16000000U) /* the timer is clocked at 16MHz */ typedef struct { timer_cb_t cb; void *arg; uint8_t flags; } tim_ctx_t; /** * @brief timer state memory */ static tim_ctx_t ctx[TIMER_NUMOF]; static inline NRF_TIMER_Type *dev(tim_t tim) { return timer_config[tim].dev; } int timer_init(tim_t tim, unsigned long freq, timer_cb_t cb, void *arg) { /* make sure the given timer is valid */ if (tim >= TIMER_NUMOF) { return -1; } /* save interrupt context */ ctx[tim].cb = cb; ctx[tim].arg = arg; /* power on timer */ #if CPU_FAM_NRF51 dev(tim)->POWER = 1; #endif /* reset and configure the timer */ dev(tim)->TASKS_STOP = 1; dev(tim)->BITMODE = timer_config[tim].bitmode; dev(tim)->MODE = TIMER_MODE_MODE_Timer; dev(tim)->TASKS_CLEAR = 1; /* figure out if desired frequency is available */ int i; unsigned long cando = F_TIMER; for (i = 0; i < 10; i++) { if (freq == cando) { dev(tim)->PRESCALER = i; break; } cando /= 2; } if (i == 10) { return -1; } /* reset compare state */ dev(tim)->EVENTS_COMPARE[0] = 0; dev(tim)->EVENTS_COMPARE[1] = 0; dev(tim)->EVENTS_COMPARE[2] = 0; /* enable interrupts */ NVIC_EnableIRQ(timer_config[tim].irqn); /* start the timer */ dev(tim)->TASKS_START = 1; return 0; } int timer_set(tim_t tim, int chan, unsigned int value) { uint32_t now = timer_read(tim); return timer_set_absolute(tim, chan, (now + value)); } int timer_set_absolute(tim_t tim, int chan, unsigned int value) { /* see if channel is valid */ if (chan >= timer_config[tim].channels) { return -1; } ctx[tim].flags |= (1 << chan); dev(tim)->CC[chan] = value; dev(tim)->INTENSET = (TIMER_INTENSET_COMPARE0_Msk << chan); return 1; } int timer_clear(tim_t tim, int chan) { /* see if channel is valid */ if (chan >= timer_config[tim].channels) { return -1; } dev(tim)->INTENCLR = (TIMER_INTENSET_COMPARE0_Msk << chan); ctx[tim].flags &= ~(1 << chan); return 1; } unsigned int timer_read(tim_t tim) { dev(tim)->TASKS_CAPTURE[timer_config[tim].channels] = 1; return dev(tim)->CC[timer_config[tim].channels]; } void timer_start(tim_t tim) { dev(tim)->TASKS_START = 1; } void timer_stop(tim_t tim) { dev(tim)->TASKS_STOP = 1; } static inline void irq_handler(int num) { for (unsigned i = 0; i < timer_config[num].channels; i++) { if (dev(num)->EVENTS_COMPARE[i] == 1) { dev(num)->EVENTS_COMPARE[i] = 0; if (ctx[num].flags & (1 << i)) { ctx[num].flags &= ~(1 << i); dev(num)->INTENCLR = (TIMER_INTENSET_COMPARE0_Msk << i); ctx[num].cb(ctx[num].arg, i); } } } cortexm_isr_end(); } #ifdef TIMER_0_ISR void TIMER_0_ISR(void) { irq_handler(0); } #endif #ifdef TIMER_1_ISR void TIMER_1_ISR(void) { irq_handler(1); } #endif #ifdef TIMER_2_ISR void TIMER_2_ISR(void) { irq_handler(2); } #endif