/* * Copyright (C) 2014 FU Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @addtogroup driver_periph * @{ * * @file * @brief Low-level I2C driver implementation * * @note This implementation only implements the 7-bit addressing mode. * * For implementation details please refer to STM application note AN2824. * * @author Hauke Petersen * @author Thomas Eichinger * * @} */ #include #include "cpu.h" #include "irq.h" #include "mutex.h" #include "periph_conf.h" #include "periph/i2c.h" #include "periph/gpio.h" #define ENABLE_DEBUG (0) #include "debug.h" /* guard file in case no I2C device is defined */ #if I2C_0_EN /* static function definitions */ static void _i2c_init(I2C_TypeDef *i2c, int ccr); static void _pin_config(gpio_t pin_scl, gpio_t pin_sda); static void _start(I2C_TypeDef *dev, uint8_t address, uint8_t rw_flag); static inline void _clear_addr(I2C_TypeDef *dev); static inline void _write(I2C_TypeDef *dev, char *data, int length); static inline void _stop(I2C_TypeDef *dev); /** * @brief Array holding one pre-initialized mutex for each I2C device */ static mutex_t locks[] = { #if I2C_0_EN [I2C_0] = MUTEX_INIT, #endif #if I2C_1_EN [I2C_1] = MUTEX_INIT, #endif #if I2C_2_EN [I2C_2] = MUTEX_INIT #endif #if I2C_3_EN [I2C_3] = MUTEX_INIT #endif }; int i2c_init_master(i2c_t dev, i2c_speed_t speed) { I2C_TypeDef *i2c; gpio_t pin_scl, pin_sda; int ccr; /* read speed configuration */ switch (speed) { case I2C_SPEED_NORMAL: ccr = I2C_APBCLK / 200000; break; case I2C_SPEED_FAST: ccr = I2C_APBCLK / 800000; break; default: return -2; } /* read static device configuration */ switch (dev) { #if I2C_0_EN case I2C_0: i2c = I2C_0_DEV; pin_scl = I2C_0_SCL_PIN; pin_sda = I2C_0_SDA_PIN; I2C_0_CLKEN(); NVIC_SetPriority(I2C_0_ERR_IRQ, I2C_IRQ_PRIO); NVIC_EnableIRQ(I2C_0_ERR_IRQ); break; #endif default: return -1; } /* disable peripheral */ i2c->CR1 &= ~I2C_CR1_PE; /* configure pins */ _pin_config(pin_scl, pin_sda); /* configure device */ _i2c_init(i2c, ccr); /* make sure the analog filters don't hang -> see errata sheet 2.14.7 */ if (i2c->SR2 & I2C_SR2_BUSY) { DEBUG("LINE BUSY AFTER RESET -> toggle pins now\n"); /* disable peripheral */ i2c->CR1 &= ~I2C_CR1_PE; /* re-run pin config to toggle and re-configure pins */ _pin_config(pin_scl, pin_sda); /* make peripheral soft reset */ i2c->CR1 |= I2C_CR1_SWRST; i2c->CR1 &= ~I2C_CR1_SWRST; /* enable device */ _i2c_init(i2c, ccr); } return 0; } static void _i2c_init(I2C_TypeDef *i2c, int ccr) { /* disable device and set ACK bit */ i2c->CR1 = I2C_CR1_ACK; /* configure I2C clock and enable error interrupts */ i2c->CR2 = (I2C_APBCLK / 1000000) | I2C_CR2_ITERREN; i2c->CCR = ccr; i2c->TRISE = (I2C_APBCLK / 1000000) + 1; /* configure device */ i2c->OAR1 = 0; /* makes sure we are in 7-bit address mode */ /* enable device */ i2c->CR1 |= I2C_CR1_PE; } static void _pin_config(gpio_t scl, gpio_t sda) { /* toggle pins to reset analog filter -> see datasheet */ /* set as output */ gpio_init(scl, GPIO_DIR_OUT, GPIO_NOPULL); gpio_init(sda, GPIO_DIR_OUT, GPIO_NOPULL); /* run through toggling sequence */ gpio_set(scl); gpio_set(sda); gpio_clear(sda); gpio_clear(scl); gpio_set(scl); gpio_set(sda); /* configure the pins alternate function */ gpio_init_af(scl, GPIO_AF_OUT_OD); gpio_init_af(sda, GPIO_AF_OUT_OD); } int i2c_acquire(i2c_t dev) { if (dev >= I2C_NUMOF) { return -1; } mutex_lock(&locks[dev]); return 0; } int i2c_release(i2c_t dev) { if (dev >= I2C_NUMOF) { return -1; } mutex_unlock(&locks[dev]); return 0; } int i2c_read_byte(i2c_t dev, uint8_t address, char *data) { return i2c_read_bytes(dev, address, data, 1); } int i2c_read_bytes(i2c_t dev, uint8_t address, char *data, int length) { unsigned int state; int i = 0; I2C_TypeDef *i2c; switch (dev) { #if I2C_0_EN case I2C_0: i2c = I2C_0_DEV; break; #endif default: return -1; } switch (length) { case 1: DEBUG("Send Slave address and wait for ADDR == 1\n"); _start(i2c, address, I2C_FLAG_READ); DEBUG("Set ACK = 0\n"); i2c->CR1 &= ~(I2C_CR1_ACK); DEBUG("Clear ADDR and set STOP = 1\n"); state = disableIRQ(); _clear_addr(i2c); i2c->CR1 |= (I2C_CR1_STOP); restoreIRQ(state); DEBUG("Wait for RXNE == 1\n"); while (!(i2c->SR1 & I2C_SR1_RXNE)); DEBUG("Read received data\n"); *data = (char)i2c->DR; /* wait until STOP is cleared by hardware */ while (i2c->CR1 & I2C_CR1_STOP); /* reset ACK to be able to receive new data */ i2c->CR1 |= (I2C_CR1_ACK); break; case 2: DEBUG("Send Slave address and wait for ADDR == 1\n"); _start(i2c, address, I2C_FLAG_READ); DEBUG("Set POS bit\n"); i2c->CR1 |= (I2C_CR1_POS | I2C_CR1_ACK); DEBUG("Crit block: Clear ADDR bit and clear ACK flag\n"); state = disableIRQ(); _clear_addr(i2c); i2c->CR1 &= ~(I2C_CR1_ACK); restoreIRQ(state); DEBUG("Wait for transfer to be completed\n"); while (!(i2c->SR1 & I2C_SR1_BTF)); DEBUG("Crit block: set STOP and read first byte\n"); state = disableIRQ(); i2c->CR1 |= (I2C_CR1_STOP); data[0] = (char)i2c->DR; restoreIRQ(state); DEBUG("read second byte\n"); data[1] = (char)i2c->DR; DEBUG("wait for STOP bit to be cleared again\n"); while (i2c->CR1 & I2C_CR1_STOP); DEBUG("reset POS = 0 and ACK = 1\n"); i2c->CR1 &= ~(I2C_CR1_POS); i2c->CR1 |= (I2C_CR1_ACK); break; default: DEBUG("Send Slave address and wait for ADDR == 1\n"); _start(i2c, address, I2C_FLAG_READ); _clear_addr(i2c); while (i < (length - 3)) { DEBUG("Wait until byte was received\n"); while (!(i2c->SR1 & I2C_SR1_RXNE)); DEBUG("Copy byte from DR\n"); data[i++] = (char)i2c->DR; } DEBUG("Reading the last 3 bytes, waiting for BTF flag\n"); while (!(i2c->SR1 & I2C_SR1_BTF)); DEBUG("Disable ACK\n"); i2c->CR1 &= ~(I2C_CR1_ACK); DEBUG("Crit block: set STOP and read N-2 byte\n"); state = disableIRQ(); data[i++] = (char)i2c->DR; i2c->CR1 |= (I2C_CR1_STOP); restoreIRQ(state); DEBUG("Read N-1 byte\n"); data[i++] = (char)i2c->DR; while (!(i2c->SR1 & I2C_SR1_RXNE)); DEBUG("Read last byte\n"); data[i++] = (char)i2c->DR; DEBUG("wait for STOP bit to be cleared again\n"); while (i2c->CR1 & I2C_CR1_STOP); DEBUG("reset POS = 0 and ACK = 1\n"); i2c->CR1 &= ~(I2C_CR1_POS); i2c->CR1 |= (I2C_CR1_ACK); } return length; } int i2c_read_reg(i2c_t dev, uint8_t address, uint8_t reg, char *data) { return i2c_read_regs(dev, address, reg, data, 1); } int i2c_read_regs(i2c_t dev, uint8_t address, uint8_t reg, char *data, int length) { I2C_TypeDef *i2c; switch (dev) { #if I2C_0_EN case I2C_0: i2c = I2C_0_DEV; break; #endif default: return -1; } /* send start condition and slave address */ DEBUG("Send slave address and clear ADDR flag\n"); _start(i2c, address, I2C_FLAG_WRITE); _clear_addr(i2c); DEBUG("Write reg into DR\n"); i2c->DR = reg; _stop(i2c); DEBUG("Now start a read transaction\n"); return i2c_read_bytes(dev, address, data, length); } int i2c_write_byte(i2c_t dev, uint8_t address, char data) { return i2c_write_bytes(dev, address, &data, 1); } int i2c_write_bytes(i2c_t dev, uint8_t address, char *data, int length) { I2C_TypeDef *i2c; switch (dev) { #if I2C_0_EN case I2C_0: i2c = I2C_0_DEV; break; #endif default: return -1; } /* start transmission and send slave address */ DEBUG("sending start sequence\n"); _start(i2c, address, I2C_FLAG_WRITE); _clear_addr(i2c); /* send out data bytes */ _write(i2c, data, length); /* end transmission */ DEBUG("Ending transmission\n"); _stop(i2c); DEBUG("STOP condition was send out\n"); return length; } int i2c_write_reg(i2c_t dev, uint8_t address, uint8_t reg, char data) { return i2c_write_regs(dev, address, reg, &data, 1); } int i2c_write_regs(i2c_t dev, uint8_t address, uint8_t reg, char *data, int length) { I2C_TypeDef *i2c; switch (dev) { #if I2C_0_EN case I2C_0: i2c = I2C_0_DEV; break; #endif default: return -1; } /* start transmission and send slave address */ _start(i2c, address, I2C_FLAG_WRITE); _clear_addr(i2c); /* send register address and wait for complete transfer to be finished*/ _write(i2c, (char *)(®), 1); /* write data to register */ _write(i2c, data, length); /* finish transfer */ _stop(i2c); /* return number of bytes send */ return length; } void i2c_poweron(i2c_t dev) { switch (dev) { #if I2C_0_EN case I2C_0: I2C_0_CLKEN(); break; #endif } } void i2c_poweroff(i2c_t dev) { switch (dev) { #if I2C_0_EN case I2C_0: while (I2C_0_DEV->SR2 & I2C_SR2_BUSY); I2C_0_CLKDIS(); break; #endif } } static void _start(I2C_TypeDef *dev, uint8_t address, uint8_t rw_flag) { /* wait for device to be ready */ DEBUG("Wait for device to be ready\n"); while (dev->SR2 & I2C_SR2_BUSY); /* generate start condition */ DEBUG("Generate start condition\n"); dev->CR1 |= I2C_CR1_START; DEBUG("Wait for SB flag to be set\n"); while (!(dev->SR1 & I2C_SR1_SB)); /* send address and read/write flag */ DEBUG("Send address\n"); dev->DR = (address << 1) | rw_flag; /* clear ADDR flag by reading first SR1 and then SR2 */ DEBUG("Wait for ADDR flag to be set\n"); while (!(dev->SR1 & I2C_SR1_ADDR)); } static inline void _clear_addr(I2C_TypeDef *dev) { dev->SR1; dev->SR2; } static inline void _write(I2C_TypeDef *dev, char *data, int length) { DEBUG("Looping through bytes\n"); for (int i = 0; i < length; i++) { /* write data to data register */ dev->DR = (uint8_t)data[i]; DEBUG("Written %i byte to data reg, now waiting for DR to be empty again\n", i); /* wait for transfer to finish */ while (!(dev->SR1 & I2C_SR1_TXE)); DEBUG("DR is now empty again\n"); } } static inline void _stop(I2C_TypeDef *dev) { /* make sure last byte was send */ while (!(dev->SR1 & I2C_SR1_BTF)); /* send STOP condition */ dev->CR1 |= I2C_CR1_STOP; /* wait until transmission is complete */ while (dev->SR2 & I2C_SR2_BUSY); } #if I2C_0_EN void I2C_0_ERR_ISR(void) { unsigned state = I2C_0_DEV->SR1; DEBUG("\n\n### I2C ERROR OCCURED ###\n"); DEBUG("status: %08x\n", state); if (state & I2C_SR1_OVR) { DEBUG("OVR\n"); } if (state & I2C_SR1_AF) { DEBUG("AF\n"); } if (state & I2C_SR1_ARLO) { DEBUG("ARLO\n"); } if (state & I2C_SR1_BERR) { DEBUG("BERR\n"); } if (state & I2C_SR1_PECERR) { DEBUG("PECERR\n"); } if (state & I2C_SR1_TIMEOUT) { DEBUG("TIMEOUT\n"); } if (state & I2C_SR1_SMBALERT) { DEBUG("SMBALERT\n"); } while (1); } #endif #endif /* I2C_0_EN */