/** * Native CPU kernel_intern.h and sched.h implementation * * in-process preemptive context switching utilizes POSIX ucontexts. * (ucontext provides for architecture independent stack handling) * * Copyright (C) 2013 Ludwig Ortmann * * This file is subject to the terms and conditions of the GNU Lesser General * Public License. See the file LICENSE in the top level directory for more * details. * * @ingroup native_cpu * @{ * @file * @author Ludwig Ortmann */ #include #include #ifdef __MACH__ #define _XOPEN_SOURCE #endif #include #ifdef __MACH__ #undef _XOPEN_SOURCE #endif #include #ifdef HAVE_VALGRIND_H #include #define VALGRIND_DEBUG DEBUG #elif defined(HAVE_VALGRIND_VALGRIND_H) #include #define VALGRIND_DEBUG DEBUG #else #define VALGRIND_STACK_REGISTER(...) #define VALGRIND_DEBUG(...) #endif #include #include "kernel_internal.h" #include "kernel.h" #include "irq.h" #include "sched.h" #include "cpu.h" #include "cpu-conf.h" #include "native_internal.h" #define ENABLE_DEBUG (0) #include "debug.h" extern volatile tcb_t *active_thread; ucontext_t end_context; char __end_stack[SIGSTKSZ]; #ifdef MODULE_UART0 fd_set _native_rfds; #endif NORETURN void reboot(void) { printf("\n\n\t\t!! REBOOT !!\n\n"); if (execve(_native_argv[0], _native_argv, NULL) == -1) { err(EXIT_FAILURE, "reboot: execve"); } errx(EXIT_FAILURE, "reboot: this should not habe been reached"); } /** * TODO: implement */ void thread_print_stack(void) { DEBUG("XXX: thread_print_stack()\n"); return; } char *thread_stack_init(void (*task_func)(void), void *stack_start, int stacksize) { unsigned int *stk; ucontext_t *p; VALGRIND_STACK_REGISTER(stack_start, stack_start + stacksize); VALGRIND_DEBUG("VALGRIND_STACK_REGISTER(%p, %p)\n", stack_start, (void*)((int)stack_start + stacksize)); DEBUG("thread_stack_init()\n"); stk = (unsigned int *)stack_start; #ifdef NATIVESPONTOP p = (ucontext_t *)stk; stk += sizeof(ucontext_t) / sizeof(void *); stacksize -= sizeof(ucontext_t); #else p = (ucontext_t *)(stk + ((stacksize - sizeof(ucontext_t)) / sizeof(void *))); stacksize -= sizeof(ucontext_t); #endif if (getcontext(p) == -1) { err(EXIT_FAILURE, "thread_stack_init(): getcontext()"); } p->uc_stack.ss_sp = stk; p->uc_stack.ss_size = stacksize; p->uc_stack.ss_flags = 0; p->uc_link = &end_context; if (sigemptyset(&(p->uc_sigmask)) == -1) { err(EXIT_FAILURE, "thread_stack_init(): sigemptyset()"); } makecontext(p, task_func, 0); return (char *) p; } void isr_cpu_switch_context_exit(void) { ucontext_t *ctx; DEBUG("XXX: cpu_switch_context_exit()\n"); if ((sched_context_switch_request == 1) || (active_thread == NULL)) { sched_run(); } DEBUG("XXX: cpu_switch_context_exit(): calling setcontext(%s)\n\n", active_thread->name); ctx = (ucontext_t *)(active_thread->sp); /* the next context will have interrupts enabled due to ucontext */ DEBUG("XXX: cpu_switch_context_exit: native_interrupts_enabled = 1;\n"); native_interrupts_enabled = 1; _native_in_isr = 0; if (setcontext(ctx) == -1) { err(EXIT_FAILURE, "cpu_switch_context_exit(): setcontext():"); } errx(EXIT_FAILURE, "2 this should have never been reached!!"); } void cpu_switch_context_exit() { if (_native_in_isr == 0) { dINT(); _native_in_isr = 1; native_isr_context.uc_stack.ss_sp = __isr_stack; native_isr_context.uc_stack.ss_size = SIGSTKSZ; native_isr_context.uc_stack.ss_flags = 0; makecontext(&native_isr_context, isr_cpu_switch_context_exit, 0); if (setcontext(&native_isr_context) == -1) { err(EXIT_FAILURE, "cpu_switch_context_exit: swapcontext"); } errx(EXIT_FAILURE, "1 this should have never been reached!!"); } else { isr_cpu_switch_context_exit(); } errx(EXIT_FAILURE, "3 this should have never been reached!!"); } void isr_thread_yield() { DEBUG("isr_thread_yield()\n"); sched_run(); ucontext_t *ctx = (ucontext_t *)(active_thread->sp); DEBUG("isr_thread_yield(): switching to(%s)\n\n", active_thread->name); native_interrupts_enabled = 1; _native_in_isr = 0; if (setcontext(ctx) == -1) { err(EXIT_FAILURE, "isr_thread_yield(): setcontext()"); } } void thread_yield() { ucontext_t *ctx = (ucontext_t *)(active_thread->sp); if (_native_in_isr == 0) { _native_in_isr = 1; dINT(); native_isr_context.uc_stack.ss_sp = __isr_stack; native_isr_context.uc_stack.ss_size = SIGSTKSZ; native_isr_context.uc_stack.ss_flags = 0; makecontext(&native_isr_context, isr_thread_yield, 0); if (swapcontext(ctx, &native_isr_context) == -1) { err(EXIT_FAILURE, "thread_yield: swapcontext"); } eINT(); } else { isr_thread_yield(); } } void native_cpu_init() { if (getcontext(&end_context) == -1) { err(EXIT_FAILURE, "end_context(): getcontext()"); } end_context.uc_stack.ss_sp = __end_stack; end_context.uc_stack.ss_size = SIGSTKSZ; end_context.uc_stack.ss_flags = 0; makecontext(&end_context, sched_task_exit, 0); VALGRIND_STACK_REGISTER(__end_stack, __end_stack + sizeof(__end_stack)); VALGRIND_DEBUG("VALGRIND_STACK_REGISTER(%p, %p)\n", __end_stack, (void*)((int)__end_stack + sizeof(__end_stack))); DEBUG("RIOT native cpu initialized.\n"); } /** @} */