/* * Copyright (C) 2014 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_lpc1768 * @{ * * @file * @brief Implementation of the low-level UART driver for the LPC1768 * * @author Hauke Petersen * @} */ #include #include "cpu.h" #include "sched.h" #include "thread.h" #include "periph/uart.h" #include "periph_conf.h" /* guard the file in case no UART is defined */ #if (UART_0_EN || UART_1_EN) /** * @brief Struct holding the configuration data for a UART device */ typedef struct { uart_rx_cb_t rx_cb; /**< receive callback */ uart_tx_cb_t tx_cb; /**< transmit callback */ void *arg; /**< callback argument */ } uart_conf_t; /** * @brief UART device configurations */ static uart_conf_t config[UART_NUMOF]; int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, uart_tx_cb_t tx_cb, void *arg) { int res = uart_init_blocking(uart, baudrate); if (res < 0) { return res; } /* save callbacks */ config[uart].rx_cb = rx_cb; config[uart].tx_cb = tx_cb; config[uart].arg = arg; switch (uart) { #if UART_0_EN case UART_0: /* configure and enable global device interrupts */ NVIC_SetPriority(UART_0_IRQ, UART_IRQ_PRIO); NVIC_EnableIRQ(UART_0_IRQ); /* enable RX interrupt */ UART_0_DEV->IER |= (1 << 0); break; #endif #if UART_1_EN case UART_1: /* configure and enable global device interrupts */ NVIC_SetPriority(UART_1_IRQ, UART_IRQ_PRIO); NVIC_EnableIRQ(UART_1_IRQ); /* enable RX interrupt */ UART_1_DEV->IER |= (1 << 0); break; #endif } return 0; } int uart_init_blocking(uart_t uart, uint32_t baudrate) { switch (uart) { #if UART_0_EN case UART_0: /* this implementation only supports 115200 baud */ if (baudrate != 115200) { return -2; } /* power on UART device and select peripheral clock */ UART_0_CLKEN(); UART_0_CLKSEL(); /* set mode to 8N1 and enable access to divisor latch */ UART_0_DEV->LCR = ((0x3 << 0) | (1 << 7)); /* set baud rate registers (fixed for now) */ UART_0_DEV->DLM = 0; UART_0_DEV->DLL = 13; /* enable FIFOs */ UART_0_DEV->FCR = 1; /* select and configure the pin for RX */ UART_0_RX_PINSEL &= ~(0x3 << (UART_0_RX_PIN * 2)); UART_0_RX_PINSEL |= (UART_0_AF << (UART_0_RX_PIN * 2)); UART_0_RX_PINMODE &= ~(0x3 << (UART_0_RX_PIN * 2)); UART_0_RX_PINMODE |= (0x2 << (UART_0_RX_PIN * 2)); /* select and configure the pin for TX */ UART_0_TX_PINSEL &= ~(0x3 << (UART_0_TX_PIN * 2)); UART_0_TX_PINSEL |= (UART_0_AF << (UART_0_TX_PIN * 2)); UART_0_TX_PINMODE &= ~(0x3 << (UART_0_TX_PIN * 2)); UART_0_TX_PINMODE |= (0x2 << (UART_0_TX_PIN * 2)); /* disable access to divisor latch */ UART_0_DEV->LCR &= ~(1 << 7); break; #endif #if UART_1_EN case UART_1: /* this implementation only supports 115200 baud */ if (baudrate != 115200) { return -2; } /* power on UART device and select peripheral clock */ UART_1_CLKEN(); UART_1_CLKSEL(); /* set mode to 8N1 and enable access to divisor latch */ UART_1_DEV->LCR = ((0x3 << 0) | (1 << 7)); /* set baud rate registers (fixed for now) */ UART_1_DEV->DLM = 0; UART_1_DEV->DLL = 13; /* enable FIFOs */ UART_1_DEV->FCR = 1; /* select and configure the pin for RX */ UART_1_RX_PINSEL &= ~(0x3 << (UART_1_RX_PIN * 2)); UART_1_RX_PINSEL |= (UART_1_AF << (UART_1_RX_PIN * 2)); UART_1_RX_PINMODE &= ~(0x3 << (UART_1_RX_PIN * 2)); UART_1_RX_PINMODE |= (0x2 << (UART_1_RX_PIN * 2)); /* select and configure the pin for TX */ UART_1_TX_PINSEL &= ~(0x3 << (UART_1_TX_PIN * 2)); UART_1_TX_PINSEL |= (UART_1_AF << (UART_1_TX_PIN * 2)); UART_1_TX_PINMODE &= ~(0x3 << (UART_1_TX_PIN * 2)); UART_1_TX_PINMODE |= (0x2 << (UART_1_TX_PIN * 2)); /* disable access to divisor latch */ UART_1_DEV->LCR &= ~(1 << 7); break; #endif default: return -1; } return 0; } void uart_tx_begin(uart_t uart) { switch (uart) { #if UART_0_EN case UART_0: /* enable TX interrupt */ UART_0_DEV->IER |= (1 << 1); break; #endif #if UART_1_EN case UART_1: /* enable TX interrupt */ UART_1_DEV->IER |= (1 << 1); break; #endif } } int uart_write(uart_t uart, char data) { switch (uart) { #if UART_0_EN case UART_0: UART_0_DEV->THR = (uint8_t)data;; break; #endif #if UART_1_EN case UART_1: UART_1_DEV->THR = (uint8_t)data;; break; #endif default: return -1; } return 1; } int uart_read_blocking(uart_t uart, char *data) { switch (uart) { #if UART_0_EN case UART_0: while (!(UART_0_DEV->LSR & (1 << 0))); /* wait for RDR bit to be set */ *data = (char)UART_0_DEV->RBR; break; #endif #if UART_1_EN case UART_1: while (!(UART_1_DEV->LSR & (1 << 0))); /* wait for RDR bit to be set */ *data = (char)UART_1_DEV->RBR; break; #endif default: return -1; } return 1; } int uart_write_blocking(uart_t uart, char data) { switch (uart) { #if UART_0_EN case UART_0: while (!(UART_0_DEV->LSR & (1 << 5))); /* wait for THRE bit to be set */ UART_0_DEV->THR = (uint8_t)data; break; #endif #if UART_1_EN case UART_1: while (!(UART_1_DEV->LSR & (1 << 5))); /* wait for THRE bit to be set */ UART_1_DEV->THR = (uint8_t)data; break; #endif default: return -1; } return 1; } void uart_poweron(uart_t uart) { switch (uart) { #if UART_0_EN case UART_0: UART_0_CLKEN(); break; #endif #if UART_1_EN case UART_1: UART_1_CLKEN(); break; #endif } } void uart_poweroff(uart_t uart) { switch (uart) { #if UART_0_EN case UART_0: UART_0_CLKDIS(); break; #endif #if UART_1_EN case UART_1: UART_1_CLKDIS(); break; #endif } } #if UART_0_EN void UART_0_ISR(void) { if (UART_0_DEV->LSR & (1 << 0)) { /* is RDR flag set? */ char data = (char)UART_0_DEV->RBR; config[UART_0].rx_cb(config[UART_0].arg, data); } if (UART_0_DEV->LSR & (1 << 5)) { /* THRE flag set? */ if (UART_0_DEV->IER & (1 << 1)) { if (config[UART_0].tx_cb(config[UART_0].arg) == 0) { /* disable TX interrupt */ UART_0_DEV->IER &= ~(1 << 1); } } } if (sched_context_switch_request) { thread_yield(); } } #endif #if UART_1_EN void UART_1_ISR(void) { if (UART_1_DEV->LSR & (1 << 0)) { /* is RDR flag set? */ char data = (char)UART_1_DEV->RBR; config[UART_1].rx_cb(config[UART_1].arg, data); } if (UART_1_DEV->LSR & (1 << 5)) { /* THRE flag set? */ if (UART_1_DEV->IER & (1 << 1)) { if (config[UART_1].tx_cb(config[UART_1].arg) == 0) { /* disable TX interrupt */ UART_1_DEV->IER &= ~(1 << 1); } } } if (sched_context_switch_request) { thread_yield(); } } #endif #endif /* (UART_0_EN || UART_1_EN) */