/* * Copyright (C) 2015 HAW Hamburg * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup drivers_lis3mdl * @{ * * @file * @brief Device driver implementation for the LIS3MDL 3-axis magnetometer * * @author René Herthel <rene-herthel@outlook.de> * * @} */ #include "lis3mdl.h" #include "include/lis3mdl-internal.h" #define ENABLE_DEBUG (0) #include "debug.h" #define MASK_INT16_MSB (0x8000) #define MASK_INT16_NMSB (0x7FFF) #define TEMP_DIVIDER (16) #define TEMP_OFFSET (25) #define GAUSS_DIVIDER (1000) #define DEV_I2C (dev->params.i2c) #define DEV_ADDR (dev->params.addr) /** * @brief Takes an unsigned value representing a two's complement number * and returns the signed number it represents * * @param[in] value value which represents a two's complement number * * @return the converted signed number of 'value' */ static inline int16_t _twos_complement(int16_t value) { if (value & MASK_INT16_MSB) { value = ~(value & MASK_INT16_NMSB) + 1; return ~(value & MASK_INT16_NMSB); } else { return value; } } int lis3mdl_init(lis3mdl_t *dev, const lis3mdl_params_t *params) { dev->params = *params; uint8_t tmp; i2c_acquire(DEV_I2C); i2c_read_reg(DEV_I2C, DEV_ADDR, LIS3DML_WHO_AM_I_REG, &tmp, 0); if (tmp != LIS3MDL_CHIP_ID) { DEBUG("LIS3MDL: Identification failed, %02X != %02X\n", tmp, LIS3MDL_CHIP_ID); return -1; } tmp = ( LIS3MDL_MASK_REG1_TEMP_EN /* enable temperature sensor */ | dev->params.xy_mode /* set x-, y-axis operative mode */ | dev->params.odr); /* set output data rate */ i2c_write_reg(DEV_I2C, DEV_ADDR, LIS3MDL_CTRL_REG1, tmp, 0); /* set Full-scale configuration */ i2c_write_reg(DEV_I2C, DEV_ADDR, LIS3MDL_CTRL_REG2, dev->params.scale, 0); /* set continuous-conversion mode */ i2c_write_reg(DEV_I2C, DEV_ADDR, LIS3MDL_CTRL_REG3, dev->params.op_mode, 0); /* set z-axis operative mode */ i2c_write_reg(DEV_I2C, DEV_ADDR, LIS3MDL_CTRL_REG4, dev->params.z_mode, 0); i2c_release(DEV_I2C); return 0; } void lis3mdl_read_mag(const lis3mdl_t *dev, lis3mdl_3d_data_t *data) { uint8_t tmp[2] = {0, 0}; i2c_acquire(DEV_I2C); i2c_read_regs(DEV_I2C, DEV_ADDR, LIS3MDL_OUT_X_L_REG, &tmp[0], 2, 0); data->x_axis = (tmp[1] << 8) | tmp[0]; i2c_read_regs(DEV_I2C, DEV_ADDR, LIS3MDL_OUT_Y_L_REG, &tmp[0], 2, 0); data->y_axis = (tmp[1] << 8) | tmp[0]; i2c_read_regs(DEV_I2C, DEV_ADDR, LIS3MDL_OUT_Z_L_REG, &tmp[0], 2, 0); data->z_axis = (tmp[1] << 8) | tmp[0]; data->x_axis = _twos_complement(data->x_axis); data->y_axis = _twos_complement(data->y_axis); data->z_axis = _twos_complement(data->z_axis); /* Divide the raw data by 1000 to geht [G] := Gauss */ data->x_axis /= GAUSS_DIVIDER; data->y_axis /= GAUSS_DIVIDER; data->z_axis /= GAUSS_DIVIDER; i2c_release(DEV_I2C); } void lis3mdl_read_temp(const lis3mdl_t *dev, int16_t *value) { i2c_acquire(DEV_I2C); i2c_read_regs(DEV_I2C, DEV_ADDR, LIS3MDL_TEMP_OUT_L_REG, (uint8_t*)value, 2, 0); i2c_release(DEV_I2C); *value = _twos_complement(*value); *value = (TEMP_OFFSET + (*value / TEMP_DIVIDER)); } void lis3mdl_enable(const lis3mdl_t *dev) { i2c_acquire(DEV_I2C); /* Z-axis medium-power mode */ i2c_write_reg(DEV_I2C, DEV_ADDR, LIS3MDL_CTRL_REG3, LIS3MDL_MASK_REG3_Z_MEDIUM_POWER, 0); i2c_release(DEV_I2C); } void lis3mdl_disable(const lis3mdl_t *dev) { uint8_t tmp = ( LIS3MDL_MASK_REG3_LOW_POWER_EN /**< enable power-down mode */ | LIS3MDL_MASK_REG3_Z_LOW_POWER); /**< Z-axis low-power mode */ i2c_acquire(DEV_I2C); i2c_write_reg(DEV_I2C, DEV_ADDR, LIS3MDL_CTRL_REG3, tmp, 0); i2c_release(DEV_I2C); }