/** * Copyright (C) 2018 Eistec AB * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. * * @ingroup sys_frac * @{ * @file * @brief Integer fraction function implementations * * @author Joakim NohlgÄrd * * @} */ #include #include #include "assert.h" #include "frac.h" #define ENABLE_DEBUG (0) #include "debug.h" /** * @brief compute greatest common divisor of @p u and @p v * * @param[in] u first operand * @param[in] v second operand * * @return Greatest common divisor of @p u and @p v */ static uint32_t gcd32(uint32_t u, uint32_t v) { /* Source: https://en.wikipedia.org/wiki/Binary_GCD_algorithm#Iterative_version_in_C */ unsigned shift; /* GCD(0,v) == v; GCD(u,0) == u, GCD(0,0) == 0 */ if (u == 0) { return v; } if (v == 0) { return u; } /* Let shift := log2 K, where K is the greatest power of 2 * dividing both u and v. */ for (shift = 0; ((u | v) & 1) == 0; ++shift) { u >>= 1; v >>= 1; } /* remove all factors of 2 in u */ while ((u & 1) == 0) { u >>= 1; } /* From here on, u is always odd. */ do { /* remove all factors of 2 in v -- they are not common */ /* note: v is not zero, so while will terminate */ while ((v & 1) == 0) { v >>= 1; } /* Now u and v are both odd. Swap if necessary so u <= v, * then set v = v - u (which is even). */ if (u > v) { /* Swap u and v */ uint32_t t = v; v = u; u = t; } v = v - u; /* Here v >= u */ } while (v != 0); /* restore common factors of 2 */ return u << shift; } uint32_t frac_long_divide(uint32_t num, uint32_t den, int *prec, uint32_t *rem) { /* Binary long division with adaptive number of fractional bits */ /* The result will be a Qx.y number where x is the number of bits in the * integer part and y = 64 - x. Similar to floating point, except the result * is unsigned, and we can only represent numbers in the range 2**-32..(2**32 - 1) */ assert(den); /* divide by zero */ uint32_t q = 0; /* Quotient */ uint64_t r = 0; /* Remainder */ if (prec) { *prec = 0; } if (num == 0) { if (rem) { *rem = 0; } return 0; } unsigned p = bitarithm_msb(num); int i_bits = p + 1; /* Number of integer bits in the result */ uint32_t num_mask = (1ul << p); for (unsigned k = 0; k < (64u + p); ++k) { r <<= 1; q <<= 1; if (num & num_mask) { r |= 1; } num_mask >>= 1; if (r >= den) { r -= den; q |= 1; } if (q == 0) { --i_bits; } if (q & (1ul << 31u)) { /* result register is full */ break; } if ((r == 0) && (num == 0)) { /* divides evenly */ break; } } if (r > 0) { ++q; } if (prec) { *prec = i_bits; } if (rem) { *rem = r; } return q; } void frac_init(frac_t *frac, uint32_t num, uint32_t den) { DEBUG("frac_init32(%p, %" PRIu32 ", %" PRIu32 ")\n", (const void *)frac, num, den); assert(den); /* Reduce the fraction to shortest possible form by dividing by the greatest * common divisor */ uint32_t gcd = gcd32(num, den); /* Divide den and num by their greatest common divisor */ den /= gcd; num /= gcd; int prec = 0; uint32_t rem = 0; frac->frac = frac_long_divide(num, den, &prec, &rem); frac->shift = (sizeof(frac->frac) * 8) - prec; DEBUG("frac_init32: gcd = %" PRIu32 " num = %" PRIu32 " den = %" PRIu32 " frac = 0x%08" PRIx32 " shift = %02d, rem = 0x%08" PRIx32 "\n", gcd, num, den, frac->frac, frac->shift, rem); }