/* * Copyright (C) 2015-2016 Freie UniversitÀt Berlin * Copyright (C) 2017-2018 Eistec AB * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_kinetis * @{ * * @file * @brief CPU specific definitions for internal peripheral handling * * @author Hauke Petersen * @author Joakim NohlgÄrd */ #ifndef PERIPH_CPU_H #define PERIPH_CPU_H #include #include #include "cpu.h" #ifdef __cplusplus extern "C" { #endif #ifdef PORT_PCR_MUX # define KINETIS_HAVE_PCR #endif #ifdef SIM_PINSEL_REG # define KINETIS_HAVE_PINSEL #endif #ifdef ADC_CFG1_MODE_MASK # define KINETIS_HAVE_ADC_K #endif #ifdef SPI_CTAR_CPHA_MASK # define KINETIS_HAVE_MK_SPI #endif #ifdef LPTMR_CSR_TEN_MASK # define KINETIS_HAVE_LPTMR #endif /** * @name CPU specific gpio_t type definition * @{ */ #define HAVE_GPIO_T typedef uint16_t gpio_t; /** @} */ /** * @brief Definition of a fitting UNDEF value */ #define GPIO_UNDEF (0xffff) /** * @brief Define a CPU specific GPIO pin generator macro */ #define GPIO_PIN(x, y) (((x + 1) << 12) | (x << 6) | y) #ifdef SIM_UIDH_UID_MASK /* Kinetis Cortex-M4 has a 128 bit SIM UID */ /** * @brief Starting offset of CPU_ID */ #define CPUID_ADDR (&SIM->UIDH) /** * @brief Length of the CPU_ID in octets */ #define CPUID_LEN (16U) #else /* defined(SIM_UIDH_UID_MASK) */ /* Kinetis Cortex-M0+ has a 96 bit SIM UID */ /** * @brief Starting offset of CPU_ID */ #define CPUID_ADDR (&SIM->UIDMH) /** * @brief Length of the CPU_ID in octets */ #define CPUID_LEN (12U) #endif /* defined(SIM_UIDH_UID_MASK) */ /** * @brief Generate GPIO mode bitfields * * We use the following bits to encode the pin mode: * - bit 0: 0 for pull-down or 1 for pull-up * - bit 1: pull resistor enable (as configured in bit 0) * - bit 5: OD enable * - bit 7: output or input mode */ #define GPIO_MODE(pu, pe, od, out) (pu | (pe << 1) | (od << 5) | (out << 7)) /** * @brief Define a CPU specific SPI hardware chip select line macro * * We simply map the 5 hardware channels to the numbers [0-4], this still allows * us to differentiate between GPIP_PINs and SPI_HWSC lines. */ #define SPI_HWCS(x) (x) /** * @brief Kinetis CPUs have a maximum number of 5 hardware chip select lines */ #define SPI_HWCS_NUMOF (5) /** * @name This CPU makes use of the following shared SPI functions * @{ */ #define PERIPH_SPI_NEEDS_TRANSFER_BYTE 1 #define PERIPH_SPI_NEEDS_TRANSFER_REG 1 #define PERIPH_SPI_NEEDS_TRANSFER_REGS 1 /** @} */ /** * @brief Prevent shared timer functions from being used */ #define PERIPH_TIMER_PROVIDES_SET /** * @name Kinetis power mode configuration * @{ */ #define PM_NUM_MODES (3U) enum { KINETIS_PM_LLS = 0, KINETIS_PM_VLPS = 1, KINETIS_PM_STOP = 2, KINETIS_PM_WAIT = 3, }; #if MODULE_PM_LAYERED #include "pm_layered.h" /** * @brief pm_block iff pm_layered is used */ #define PM_BLOCK(x) pm_block(x) /** * @brief pm_unblock iff pm_layered is used */ #define PM_UNBLOCK(x) pm_unblock(x) #else /* ignore these calls when not using pm_layered */ #define PM_BLOCK(x) #define PM_UNBLOCK(x) #endif /** @} */ #ifndef DOXYGEN /** * @name GPIO pin modes * @{ */ #define HAVE_GPIO_MODE_T typedef enum { GPIO_IN = GPIO_MODE(0, 0, 0, 0), /**< IN */ GPIO_IN_PD = GPIO_MODE(0, 1, 0, 0), /**< IN with pull-down */ GPIO_IN_PU = GPIO_MODE(1, 1, 0, 0), /**< IN with pull-up */ GPIO_OUT = GPIO_MODE(0, 0, 0, 1), /**< OUT (push-pull) */ GPIO_OD = GPIO_MODE(1, 0, 1, 1), /**< OD */ GPIO_OD_PU = GPIO_MODE(1, 1, 1, 1), /**< OD with pull-up */ } gpio_mode_t; /** @} */ #endif /* ndef DOXYGEN */ #ifdef KINETIS_HAVE_PCR /** * @brief PORT control register bitmasks * * To combine values just aggregate them using a logical OR. */ typedef enum { GPIO_AF_ANALOG = PORT_PCR_MUX(0), /**< use pin as analog input */ GPIO_AF_GPIO = PORT_PCR_MUX(1), /**< use pin as GPIO */ GPIO_AF_2 = PORT_PCR_MUX(2), /**< use alternate function 2 */ GPIO_AF_3 = PORT_PCR_MUX(3), /**< use alternate function 3 */ GPIO_AF_4 = PORT_PCR_MUX(4), /**< use alternate function 4 */ GPIO_AF_5 = PORT_PCR_MUX(5), /**< use alternate function 5 */ GPIO_AF_6 = PORT_PCR_MUX(6), /**< use alternate function 6 */ GPIO_AF_7 = PORT_PCR_MUX(7), /**< use alternate function 7 */ #ifdef PORT_PCR_ODE_MASK GPIO_PCR_OD = (PORT_PCR_ODE_MASK), /**< open-drain mode */ #endif GPIO_PCR_PD = (PORT_PCR_PE_MASK), /**< enable pull-down */ GPIO_PCR_PU = (PORT_PCR_PE_MASK | PORT_PCR_PS_MASK) /**< enable PU */ } gpio_pcr_t; #endif /* KINETIS_HAVE_PCR */ #ifndef DOXYGEN /** * @name GPIO flank configuration values * @{ */ #ifdef KINETIS_HAVE_PCR #define HAVE_GPIO_FLANK_T typedef enum { GPIO_RISING = PORT_PCR_IRQC(0x9), /**< emit interrupt on rising flank */ GPIO_FALLING = PORT_PCR_IRQC(0xa), /**< emit interrupt on falling flank */ GPIO_BOTH = PORT_PCR_IRQC(0xb), /**< emit interrupt on both flanks */ } gpio_flank_t; #endif /* KINETIS_HAVE_PCR */ /** @} */ #endif /* ndef DOXYGEN */ /** * @brief Available ports on the Kinetis family * * Not all CPUs have the full number of ports, see your CPU data sheet for pinout. */ enum { PORT_A = 0, /**< port A */ PORT_B = 1, /**< port B */ PORT_C = 2, /**< port C */ PORT_D = 3, /**< port D */ PORT_E = 4, /**< port E */ PORT_F = 5, /**< port F */ PORT_G = 6, /**< port G */ GPIO_PORTS_NUMOF /**< overall number of available ports */ }; #ifndef DOXYGEN /** * @name ADC resolution values * @{ */ #define HAVE_ADC_RES_T #ifdef KINETIS_HAVE_ADC_K typedef enum { ADC_RES_6BIT = (0xfe), /**< not supported */ ADC_RES_8BIT = ADC_CFG1_MODE(0), /**< ADC resolution: 8 bit */ ADC_RES_10BIT = ADC_CFG1_MODE(2), /**< ADC resolution: 10 bit */ ADC_RES_12BIT = ADC_CFG1_MODE(1), /**< ADC resolution: 12 bit */ ADC_RES_14BIT = (0xff), /**< ADC resolution: 14 bit */ ADC_RES_16BIT = ADC_CFG1_MODE(3) /**< ADC resolution: 16 bit */ } adc_res_t; #endif /* KINETIS_HAVE_ADC_K */ /** @} */ #if defined(FTM_CnSC_MSB_MASK) /** * @brief Define the maximum number of PWM channels that can be configured */ #define PWM_CHAN_MAX (4U) /** * @name PWM mode configuration * @{ */ #define HAVE_PWM_MODE_T typedef enum { PWM_LEFT = (FTM_CnSC_MSB_MASK | FTM_CnSC_ELSB_MASK), /**< left aligned */ PWM_RIGHT = (FTM_CnSC_MSB_MASK | FTM_CnSC_ELSA_MASK), /**< right aligned */ PWM_CENTER = (FTM_CnSC_MSB_MASK) /**< center aligned */ } pwm_mode_t; #endif /* defined(FTM_CnSC_MSB_MASK) */ #endif /* ndef DOXYGEN */ /** * @brief UART transmission modes */ typedef enum { /** @brief 8 data bits, no parity, 1 stop bit */ UART_MODE_8N1 = 0, /** @brief 8 data bits, even parity, 1 stop bit */ #if defined(UART_C1_M_MASK) || DOXYGEN /* LPUART and UART mode bits coincide, so the same setting for UART works on * the LPUART as well */ UART_MODE_8E1 = (UART_C1_M_MASK | UART_C1_PE_MASK), #elif defined(LPUART_CTRL_M_MASK) /* For CPUs which only have the LPUART */ UART_MODE_8E1 = (LPUART_CTRL_M_MASK | LPUART_CTRL_PE_MASK), #endif /** @brief 8 data bits, odd parity, 1 stop bit */ #if defined(UART_C1_M_MASK) || DOXYGEN UART_MODE_8O1 = (UART_C1_M_MASK | UART_C1_PE_MASK | UART_C1_PT_MASK), #elif defined(LPUART_CTRL_M_MASK) /* For CPUs which only have the LPUART */ UART_MODE_8O1 = (LPUART_CTRL_M_MASK | LPUART_CTRL_PE_MASK | LPUART_CTRL_PT_MASK), #endif } uart_mode_t; #ifndef DOXYGEN /** * @name SPI mode bitmasks * @{ */ #ifdef KINETIS_HAVE_MK_SPI #define HAVE_SPI_MODE_T typedef enum { #if defined(SPI_CTAR_CPHA_MASK) SPI_MODE_0 = 0, /**< CPOL=0, CPHA=0 */ SPI_MODE_1 = (SPI_CTAR_CPHA_MASK), /**< CPOL=0, CPHA=1 */ SPI_MODE_2 = (SPI_CTAR_CPOL_MASK), /**< CPOL=1, CPHA=0 */ SPI_MODE_3 = (SPI_CTAR_CPOL_MASK | SPI_CTAR_CPHA_MASK) /**< CPOL=1, CPHA=1 */ #elif defined(SPI_C1_CPHA_MASK) SPI_MODE_0 = 0, /**< CPOL=0, CPHA=0 */ SPI_MODE_1 = (SPI_C1_CPHA_MASK), /**< CPOL=0, CPHA=1 */ SPI_MODE_2 = (SPI_C1_CPOL_MASK), /**< CPOL=1, CPHA=0 */ SPI_MODE_3 = (SPI_C1_CPOL_MASK | SPI_C1_CPHA_MASK) /**< CPOL=1, CPHA=1 */ #endif } spi_mode_t; /** @} */ #endif /* KINETIS_HAVE_MK_SPI */ #endif /* ndef DOXYGEN */ /** * @brief CPU specific ADC configuration */ typedef struct { /** * @brief ADC module */ ADC_Type *dev; /** * @brief pin to use * * Use GPIO_UNDEF non-muxed ADC pins, e.g. ADC0_DP, or for internal channels, e.g. Bandgap */ gpio_t pin; /** * @brief ADC channel * * Written as-is to ADCx_SC1x before conversion. This also decides * single-ended or differential sampling, see CPU reference manual for ADCx_SC1x */ uint8_t chan; /** * @brief Hardware averaging configuration * * Written as-is to ADCx_SC3 before conversion, use @ref ADC_AVG_NONE and * @ref ADC_AVG_MAX as a shorthand notation in the board configuration */ uint8_t avg; } adc_conf_t; /** * @brief Disable hardware averaging */ #define ADC_AVG_NONE (0) /** * @brief Maximum hardware averaging (32 samples) */ #define ADC_AVG_MAX (ADC_SC3_AVGE_MASK | ADC_SC3_AVGS(3)) #if defined(DAC0_BASE) && (DAC0_BASE != This_symbol_has_been_deprecated) /** * @brief CPU specific DAC configuration */ typedef struct { DAC_Type *dev; /**< DAC device base pointer */ volatile uint32_t *scgc_addr; /**< Clock enable register, in SIM module */ uint8_t scgc_bit; /**< Clock enable bit, within the register */ } dac_conf_t; #endif /** * @brief CPU specific timer PIT module configuration */ typedef struct { /** Prescaler channel */ uint8_t prescaler_ch; /** Counting channel, will be linked to the prescaler channel */ uint8_t count_ch; } pit_conf_t; #ifdef KINETIS_HAVE_LPTMR /** * @brief CPU specific timer LPTMR module configuration */ typedef struct { /** LPTMR device base pointer */ LPTMR_Type *dev; /** Input clock frequency */ uint32_t base_freq; /** Clock source setting */ uint8_t src; /** IRQn interrupt number */ uint8_t irqn; } lptmr_conf_t; #endif /* KINETIS_HAVE_LPTMR */ #ifdef FTM_CnSC_MSB_MASK /** * @brief PWM configuration structure */ typedef struct { FTM_Type* ftm; /**< used FTM */ struct { gpio_t pin; /**< GPIO pin used, set to GPIO_UNDEF */ uint8_t af; /**< alternate function mapping */ uint8_t ftm_chan; /**< the actual FTM channel used */ } chan[PWM_CHAN_MAX]; /**< logical channel configuration */ uint8_t chan_numof; /**< number of actually configured channels */ uint8_t ftm_num; /**< FTM number used */ #ifdef KINETIS_HAVE_PINSEL volatile uint32_t *pinsel; uint32_t pinsel_mask; uint32_t pinsel_val; #endif } pwm_conf_t; #endif #ifndef DOXYGEN #define HAVE_I2C_SPEED_T typedef enum { I2C_SPEED_LOW = 10000ul, /**< low speed mode: ~10 kbit/s */ I2C_SPEED_NORMAL = 100000ul, /**< normal mode: ~100 kbit/s */ I2C_SPEED_FAST = 400000ul, /**< fast mode: ~400 kbit/s */ I2C_SPEED_FAST_PLUS = 1000000ul, /**< fast plus mode: ~1000 kbit/s */ /* High speed is not supported without external hardware hacks */ I2C_SPEED_HIGH = 3400000ul, /**< high speed mode: ~3400 kbit/s */ } i2c_speed_t; /** * @name Use shared I2C functions * @{ */ #define PERIPH_I2C_NEED_READ_REG #define PERIPH_I2C_NEED_READ_REGS #define PERIPH_I2C_NEED_WRITE_REG #define PERIPH_I2C_NEED_WRITE_REGS /** @} */ #endif /* !defined(DOXYGEN) */ /** * @brief I2C configuration structure */ typedef struct { I2C_Type *i2c; /**< Pointer to hardware module registers */ gpio_t scl_pin; /**< SCL GPIO pin */ gpio_t sda_pin; /**< SDA GPIO pin */ uint32_t freq; /**< I2C module clock frequency, usually CLOCK_BUSCLOCK or CLOCK_CORECLOCK */ i2c_speed_t speed; /**< Configured bus speed, actual speed may be lower but never higher */ IRQn_Type irqn; /**< IRQ number for this module */ uint32_t scl_pcr; /**< PORT module PCR setting for the SCL pin */ uint32_t sda_pcr; /**< PORT module PCR setting for the SDA pin */ } i2c_conf_t; /** * @brief SPI module configuration options */ typedef struct { SPI_Type *dev; /**< SPI device to use */ gpio_t pin_miso; /**< MISO pin used */ gpio_t pin_mosi; /**< MOSI pin used */ gpio_t pin_clk; /**< CLK pin used */ gpio_t pin_cs[SPI_HWCS_NUMOF]; /**< pins used for HW cs lines */ #ifdef KINETIS_HAVE_PCR gpio_pcr_t pcr; /**< alternate pin function values */ #endif /* KINETIS_HAVE_PCR */ #ifdef KINETIS_HAVE_PINSEL volatile uint32_t *pinsel; uint32_t pinsel_mask; uint32_t pinsel_val; #endif uint32_t simmask; /**< bit in the SIM register */ } spi_conf_t; /** * @brief Possible timer module types */ enum { TIMER_PIT, /**< PIT */ #ifdef KINETIS_HAVE_LPTMR TIMER_LPTMR, /**< LPTMR */ #endif /* KINETIS_HAVE_LPTMR */ }; /** * @name Hardware timer type-specific device macros * @{ */ /** @brief Timers using PIT backend */ #define TIMER_PIT_DEV(x) (TIMER_DEV(0 + (x))) #ifdef KINETIS_HAVE_LPTMR /** @brief Timers using LPTMR backend */ #define TIMER_LPTMR_DEV(x) (TIMER_DEV(PIT_NUMOF + (x))) #endif /* KINETIS_HAVE_LPTMR */ /** @} */ /** * @name RTT configuration * @{ */ #define RTT_DEV (TIMER_LPTMR_DEV(0)) #define RTT_MAX_VALUE (0x0000ffff) #define RTT_CLOCK_FREQUENCY (32768U) /* in Hz */ #define RTT_MAX_FREQUENCY (32768U) /* in Hz */ #define RTT_MIN_FREQUENCY (1U) /* in Hz */ #ifndef RTT_FREQUENCY #define RTT_FREQUENCY RTT_MAX_FREQUENCY #endif #if IS_USED(PERIPH_RTT) /* On kinetis periph_rtt is built on top on an LPTIMER so if used it will conflict with xtimer, if a LPTIMER backend and RTT are needed consider using ztimer */ #define KINETIS_XTIMER_SOURCE_PIT 1 #endif /* When setting a new compare value, the value must be at least 5 more than the current sleep timer value. Otherwise, the timer compare event may be lost. */ /** @} */ /** * @brief UART hardware module types */ typedef enum { KINETIS_UART, /**< Kinetis UART module type */ KINETIS_LPUART, /**< Kinetis Low-power UART (LPUART) module type */ } uart_type_t; /** * @brief UART module configuration options */ typedef struct { void *dev; /**< Pointer to module hardware registers */ uint32_t freq; /**< Module clock frequency, usually CLOCK_CORECLOCK or CLOCK_BUSCLOCK */ gpio_t pin_rx; /**< RX pin, GPIO_UNDEF disables RX */ gpio_t pin_tx; /**< TX pin */ #ifdef KINETIS_HAVE_PCR uint32_t pcr_rx; /**< Pin configuration register bits for RX */ uint32_t pcr_tx; /**< Pin configuration register bits for TX */ #endif #ifdef KINETIS_HAVE_PINSEL volatile uint32_t *pinsel; uint32_t pinsel_mask; uint32_t pinsel_val; #endif IRQn_Type irqn; /**< IRQ number for this module */ volatile uint32_t *scgc_addr; /**< Clock enable register, in SIM module */ uint8_t scgc_bit; /**< Clock enable bit, within the register */ uart_mode_t mode; /**< UART mode: data bits, parity, stop bits */ uart_type_t type; /**< Hardware module type (KINETIS_UART or KINETIS_LPUART)*/ } uart_conf_t; #if !defined(KINETIS_HAVE_PLL) && defined(MODULE_PERIPH_MCG) \ && defined(MCG_C6_PLLS_MASK) || DOXYGEN /** * @brief Defined to 1 if the MCG in this Kinetis CPU has a PLL */ #define KINETIS_HAVE_PLL 1 #else #define KINETIS_HAVE_PLL 0 #endif #ifdef MODULE_PERIPH_MCG_LITE /** * @brief Kinetis possible MCG modes */ typedef enum kinetis_mcg_mode { KINETIS_MCG_MODE_LIRC8M = 0, /**< LIRC 8 MHz mode*/ KINETIS_MCG_MODE_HIRC = 1, /**< HIRC 48 MHz mode */ KINETIS_MCG_MODE_EXT = 2, /**< External clocking mode */ KINETIS_MCG_MODE_LIRC2M = 3, /**< LIRC 2 MHz mode */ KINETIS_MCG_MODE_NUMOF, /**< Number of possible modes */ } kinetis_mcg_mode_t; #endif /* MODULE_PERIPH_MCG_LITE */ #ifdef MODULE_PERIPH_MCG /** * @brief Kinetis possible MCG modes */ typedef enum kinetis_mcg_mode { KINETIS_MCG_MODE_FEI = 0, /**< FLL Engaged Internal Mode */ KINETIS_MCG_MODE_FEE = 1, /**< FLL Engaged External Mode */ KINETIS_MCG_MODE_FBI = 2, /**< FLL Bypassed Internal Mode */ KINETIS_MCG_MODE_FBE = 3, /**< FLL Bypassed External Mode */ KINETIS_MCG_MODE_BLPI = 4, /**< FLL Bypassed Low Power Internal Mode */ KINETIS_MCG_MODE_BLPE = 5, /**< FLL Bypassed Low Power External Mode */ #if KINETIS_HAVE_PLL KINETIS_MCG_MODE_PBE = 6, /**< PLL Bypassed External Mode */ KINETIS_MCG_MODE_PEE = 7, /**< PLL Engaged External Mode */ #endif KINETIS_MCG_MODE_NUMOF, /**< Number of possible modes */ } kinetis_mcg_mode_t; /** * @brief Kinetis MCG FLL multiplier settings */ typedef enum { /** FLL multiplier = 640 */ KINETIS_MCG_FLL_FACTOR_640 = (MCG_C4_DRST_DRS(0)), /** FLL multiplier = 732 */ KINETIS_MCG_FLL_FACTOR_732 = (MCG_C4_DRST_DRS(0) | MCG_C4_DMX32_MASK), /** FLL multiplier = 1280 */ KINETIS_MCG_FLL_FACTOR_1280 = (MCG_C4_DRST_DRS(1)), /** FLL multiplier = 1464 */ KINETIS_MCG_FLL_FACTOR_1464 = (MCG_C4_DRST_DRS(1) | MCG_C4_DMX32_MASK), /** FLL multiplier = 1920 */ KINETIS_MCG_FLL_FACTOR_1920 = (MCG_C4_DRST_DRS(2)), /** FLL multiplier = 2197 */ KINETIS_MCG_FLL_FACTOR_2197 = (MCG_C4_DRST_DRS(2) | MCG_C4_DMX32_MASK), /** FLL multiplier = 2560 */ KINETIS_MCG_FLL_FACTOR_2560 = (MCG_C4_DRST_DRS(3)), /** FLL multiplier = 2929 */ KINETIS_MCG_FLL_FACTOR_2929 = (MCG_C4_DRST_DRS(3) | MCG_C4_DMX32_MASK), } kinetis_mcg_fll_t; #endif /* MODULE_PERIPH_MCG */ #if defined(MODULE_PERIPH_MCG) || defined(MODULE_PERIPH_MCG_LITE) /** * @brief Kinetis FLL external reference clock range settings */ typedef enum { KINETIS_MCG_ERC_RANGE_LOW = MCG_C2_RANGE0(0), /**< for 31.25-39.0625 kHz crystal */ KINETIS_MCG_ERC_RANGE_HIGH = MCG_C2_RANGE0(1), /**< for 3-8 MHz crystal */ KINETIS_MCG_ERC_RANGE_VERY_HIGH = MCG_C2_RANGE0(2), /**< for 8-32 MHz crystal */ } kinetis_mcg_erc_range_t; /** * @brief Clock generation configuration flags * * @see "Clock distribution -> High-Level device clocking diagram" in every * Kinetis CPU reference manual */ typedef enum { /** * @brief Turn on OSC0 oscillator * * - If this flag is set, the OSC0 oscillator expects a crystal between * the pins XTAL0 and EXTAL0, and the OSCCLK internal signal will be * provided by OSC0. * - If not set, the EXTAL0 pin will be used directly as the OSCCLK signal. */ KINETIS_CLOCK_OSC0_EN = (1 << 0), /** * @brief Turn on RTC oscillator * * - If this flag is set, the RTC oscillator expects a crystal between * the pins XTAL32 and EXTAL32. * - If not set, the EXTAL32 pin can be used as an external clock signal on * certain CPU models. */ KINETIS_CLOCK_RTCOSC_EN = (1 << 1), /** * @brief Use the fast internal reference clock as MCGIRCLK signal * * This flag corresponds to the IRCS bit in the MCG_C2 register. * * @note This flag affects the clock frequency of the CPU when using the MCG * in FBI, or BLPI clocking modes. * * @note This flag is ignored on MCG_Lite parts * * - If this flag is set, the fast internal reference clock (up to 4 MHz, * depends on settings) will be routed to the MCGIRCLK internal clock signal. * - If not set, the slow internal reference clock (32 kHz) will be routed to * the MCGIRCLK internal clock signal. FBI and BLPI modes will clock the core * at 32 kHz. */ KINETIS_CLOCK_USE_FAST_IRC = (1 << 2), /** * @brief Enable MCGIRCLK internal clock signal * * This flag corresponds to the IRCLKEN bit in the MCG_C1 register. * * - If this flag is set, the MCG will provide MCGIRCLK for use by other * peripherals. */ KINETIS_CLOCK_MCGIRCLK_EN = (1 << 3), /** * @brief Enable MCGIRCLK signal during STOP modes * * This flag corresponds to the IREFSTEN bit in the MCG_SC register. * * - If this flag is set, MCGIRCLK internal clock signal will be available * for clocking peripherals during CPU STOP modes. * - If not set, the MCGIRCLK internal clock signal will be stopped during * CPU STOP modes. */ KINETIS_CLOCK_MCGIRCLK_STOP_EN = (1 << 4), /** * @brief Enable MCGPCLK (HIRC) internal clock signal * * This flag corresponds to the HIRCEN bit in the MCG_MC register. * * This clock source is only available on MCG_Lite parts * * - If this flag is set, the MCG will provide MCGPCLK for use by other * peripherals. */ KINETIS_CLOCK_MCGPCLK_EN = (1 << 5), } kinetis_clock_flags_t; /** * @brief Clock configuration for Kinetis CPUs */ typedef struct { /** * @brief Clock divider bitfield setting * * The value will be written to the SIM_CLKDIV1 hardware register without * any transformation. Use the SIM_CLKDIV1_OUTDIVx() macros to ensure the * proper bit shift for the chosen divider settings. * * @see CPU reference manual, SIM_CLKDIV1 */ uint32_t clkdiv1; /** * @brief RTC oscillator Capacitor Load Configuration bits * * The bits will be passed directly to the RTC_CR register without any * transformation, i.e. the SC16P bit is (unintuitively) at bit position 10, * SC8P is at position 11, and so on (see details in the reference manual). * Use the RTC_CR_SCxP_MASK macros to avoid accidentally reversing the bits * here. * * @see CPU reference manual, RTC_CR[SCxP] */ uint32_t rtc_clc; /** * @brief ERCLK32K 32 kHz reference selection * * The bits will be passed directly to the SIM_SOPT1 register without any * transformation, use the SIM_SOPT1_OSC32KSEL() macro to ensure the proper * bit shift for the chosen setting. * * This signal is the input clock to the RTC module on some CPUs and an input * option for the LPTMRx modules. On other CPUs the RTC is clocked directly * by the RTC oscillator output without passing through this clock multiplexer. * * @see CPU reference manual, SIM_SOPT1[OSC32KSEL] */ uint32_t osc32ksel; /** * @brief Flags which will enable various clocking options at init * * @see @ref kinetis_clock_flags_t */ unsigned int clock_flags; /** * @brief MCG mode used after initialization * * @see @ref kinetis_mcg_mode_t */ kinetis_mcg_mode_t default_mode; /** * @brief ERC range setting * * @see @ref kinetis_mcg_erc_range_t */ kinetis_mcg_erc_range_t erc_range; /** * @brief OSC0 Capacitor Load Configuration bits * * The bits will be passed directly to the OSC_CR register without any * transformation, i.e. the SC16P bit is (unintuitively) the LSB, SC8P is * the next bit, and so on (see details in the reference manual). Use the * OSC_CR_SCxP_MASK macros to avoid accidentally reversing the bits here. * * @see CPU reference manual, OSC_CR[SCxP] */ uint8_t osc_clc; #ifdef MODULE_PERIPH_MCG /** * @brief MCG external reference oscillator selection * * The bits will be passed directly to the MCG_C7 register without any * transformation, use the MCG_C7_OSCSEL() macro to ensure the proper bit * shift for the chosen setting. * * @see CPU reference manual, MCG_C7[OSCSEL] */ uint8_t oscsel; #endif /* MODULE_PERIPH_MCG */ /** * @brief Fast internal reference clock divider * * This field is also known as LIRC_DIV1 on MCG_Lite parts. * * The bits will be passed directly to the MCG_SC register without any * transformation, use the MCG_SC_FCRDIV() macro to ensure the proper bit * shift for the chosen setting. * * @see CPU reference manual, MCG_SC[FCRDIV] */ uint8_t fcrdiv; #ifdef MODULE_PERIPH_MCG_LITE /** * @brief LIRC second clock divider * * The bits will be passed directly to the MCG_MC register without any * transformation, use the MCG_MC_LIRC_DIV2() macro to ensure the proper bit * shift for the chosen setting. * This divider only affects the MCGIRCLK output, it does not affect the * core frequency when running the MCU in a LIRC clocking mode. * * @see CPU reference manual, MCG_MC[LIRC_DIV2] */ uint8_t lirc_div2; #else /** * @brief FLL ERC divider setting * * The bits will be passed directly to the MCG_C1 register without any * transformation, use the MCG_C1_FRDIV() macro to ensure the proper bit * shift for the chosen setting. * * @see CPU reference manual, MCG_C1[FRDIV] */ uint8_t fll_frdiv; /** * @brief FLL multiplier when running in FEI mode * * @see @ref kinetis_mcg_fll_t * @see CPU reference manual, MCG_C4[DMX32, DRST_DRS] */ kinetis_mcg_fll_t fll_factor_fei; /** * @brief FLL multiplier when running in FEE mode * * @see @ref kinetis_mcg_fll_t * @see CPU reference manual, MCG_C4[DMX32, DRST_DRS] */ kinetis_mcg_fll_t fll_factor_fee; #if KINETIS_HAVE_PLL /** * @brief PLL ERC divider setting * * The bits will be passed directly to the MCG_C5 register without any * transformation, use the MCG_C5_PRDIV0() macro to ensure the proper bit * shift for the chosen setting. * * @see CPU reference manual, MCG_C5[PRDIV0] */ uint8_t pll_prdiv; /** * @brief PLL VCO divider setting * * The bits will be passed directly to the MCG_C6 register without any * transformation, use the MCG_C6_VDIV0() macro to ensure the proper bit * shift for the chosen setting. * * @see CPU reference manual, MCG_C6[VDIV0] */ uint8_t pll_vdiv; #endif /* KINETIS_HAVE_PLL */ #endif /* MODULE_PERIPH_MCG */ } clock_config_t; #endif /* MODULE_PERIPH_MCG || MODULE_PERIPH_MCG_LITE */ /** * @brief CPU internal function for initializing PORTs * * @param[in] pin pin to initialize * @param[in] pcr value for the PORT's PCR register */ void gpio_init_port(gpio_t pin, uint32_t pcr); #ifdef __cplusplus } #endif #endif /* PERIPH_CPU_H */ /** @} */