/* * Copyright (c) 2015-2017 Ken Bannister. All rights reserved. * 2017 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @defgroup net_gcoap Gcoap * @ingroup net * @brief High-level interface to CoAP messaging * * gcoap provides a high-level interface for writing CoAP messages via RIOT's * sock networking API. gcoap internalizes network event processing so an * application only needs to focus on request/response handling. For a server, * gcoap accepts a list of resource paths with callbacks for writing the * response. For a client, gcoap provides a function to send a request, with a * callback for reading the server response. * * gcoap allocates a RIOT message processing thread, so a single instance can * serve multiple applications. This approach also means gcoap uses a single UDP * port, which supports RFC 6282 compression. Internally, gcoap depends on the * nanocoap package for base level structs and functionality. gcoap uses * nanocoap's Packet API to write message options. * * gcoap supports the Observe extension (RFC 7641) for a server. gcoap provides * functions to generate and send an observe notification that are similar to * the functions to send a client request. gcoap also supports the Block * extension (RFC 7959) with block-specific option functions as well as some * helpers. * * *Contents* * * - Server Operation * - Client Operation * - Observe Server Operation * - Block Operation * - Implementation Notes * - Implementation Status * * ## Server Operation ## * * gcoap listens for requests on CONFIG_GCOAP_PORT, 5683 by default. You can redefine * this by uncommenting the appropriate lines in gcoap's make file. * * gcoap allows an application to specify a collection of request resource paths * it wants to be notified about. Create an array of resources (coap_resource_t * structs) ordered by the resource path, specifically the ASCII encoding of * the path characters (digit and capital precede lower case). Use * gcoap_register_listener() at application startup to pass in these resources, * wrapped in a gcoap_listener_t. Also see _Server path matching_ in the base * [nanocoap](group__net__nanocoap.html) documentation. * * gcoap itself defines a resource for `/.well-known/core` discovery, which * lists all of the registered paths. See the _Resource list creation_ section * below for more. * * ### Creating a response ### * * An application resource includes a callback function, a coap_handler_t. After * reading the request, the callback must use functions provided by gcoap to * format the response, as described below. The callback *must* read the request * thoroughly before calling the functions, because the response buffer likely * reuses the request buffer. See `examples/gcoap/gcoap_cli.c` for a simple * example of a callback. * * Here is the expected sequence for a callback function: * * Read request completely and parse request payload, if any. Use the * coap_pkt_t _payload_ and _payload_len_ attributes. * * If there is a payload, follow the steps below. * * -# Call gcoap_resp_init() to initialize the response. * -# Use the coap_opt_add_xxx() functions to include any Options, for example * coap_opt_add_format() for Content-Format of the payload. Options *must* * be written in order by option number (see "CoAP option numbers" in * [CoAP defines](group__net__coap.html)). * -# Call coap_opt_finish() to complete the PDU metadata. Retain the returned * metadata length. * -# Write the response payload, starting at the updated _payload_ pointer * in the coap_pkt_t, for up to _payload_len_ bytes. * -# Return the sum of the metadata length and payload length. If some error * has occurred, return a negative errno code from the handler, and gcoap * will send a server error (5.00). * * If no payload, call only gcoap_response() to write the full response. If you * need to add Options, follow the first three steps in the list above instead. * * ### Resource list creation ### * * gcoap allows customization of the function that provides the list of registered * resources for `/.well-known/core` and CoRE Resource Directory registration. * By default gcoap provides gcoap_encode_link(), which lists only the target * path for each link. However, an application may specify a custom function in * the gcoap_listener_t it registers with gcoap. For example, this function may * add parameters to provide more information about the resource, as described * in RFC 6690. See the gcoap example for use of a custom encoder function. * * ## Client Operation ## * * Client operation includes two phases: creating and sending a request, and * handling the response asynchronously in a client supplied callback. See * `examples/gcoap/gcoap_cli.c` for a simple example of sending a request and * reading the response. * * ### Creating a request ### * * Here is the expected sequence to prepare and send a request: * * Allocate a buffer and a coap_pkt_t for the request. * * If there is a payload, follow the steps below. * * -# Call gcoap_req_init() to initialize the request. * -# Optionally, mark the request confirmable by calling coap_hdr_set_type() * with COAP_TYPE_CON. * -# Use the coap_opt_add_xxx() functions to include any Options beyond * Uri-Path, which was added in the first step. Options *must* be written * in order by option number (see "CoAP option numbers" in * [CoAP defines](group__net__coap.html)). * -# Call coap_opt_finish() to complete the PDU metadata. Retain the returned * metadata length. * -# Write the request payload, starting at the updated _payload_ pointer * in the coap_pkt_t, for up to _payload_len_ bytes. * * If no payload, call only gcoap_request() to write the full request. If you * need to add Options, follow the first four steps in the list above instead. * * Finally, call gcoap_req_send() with the sum of the metadata length and * payload length, the destination endpoint, and a callback function for the * host's response. * * ### Handling the response ### * * When gcoap receives the response to a request, it executes the callback from * the request. gcoap also executes the callback when a response is not * received within GCOAP_RESPONSE_TIMEOUT. * * Here is the expected sequence for handling a response in the callback. * * -# Test for a server response or timeout in the `state` field of the `memo` * callback parameter (`memo->state`). See the GCOAP_MEMO... constants. * -# Test the response with coap_get_code_class() and coap_get_code_detail(). * -# Test the response payload with the coap_pkt_t _payload_len_ and * _content_type_ attributes. * -# Read the payload, if any. * * ## Observe Server Operation * * A CoAP client may register for Observe notifications for any resource that * an application has registered with gcoap. An application does not need to * take any action to support Observe client registration. However, gcoap * limits registration for a given resource to a _single_ observer. * * It is [suggested](https://tools.ietf.org/html/rfc7641#section-6) that a * server adds the 'obs' attribute to resources that are useful for observation * (i.e. will produce notifications) as a hint. Keep in mind that this is not * mandatory in order to enable the mechanism in RIOT, nor will it prevent a * client from observing a resource that does not have this attribute in the * link description. See the "Resource list creation" section above for how the * gcoap example app publishes the obs attribute. * * An Observe notification is considered a response to the original client * registration request. So, the Observe server only needs to create and send * the notification -- no further communication or callbacks are required. * * ### Creating a notification ### * * Here is the expected sequence to prepare and send a notification: * * Allocate a buffer and a coap_pkt_t for the notification, then follow the * steps below. * * -# Call gcoap_obs_init() to initialize the notification for a resource. * Test the return value, which may indicate there is not an observer for * the resource. If so, you are done. * -# Use the coap_opt_add_xxx() functions to include any Options, for example * coap_opt_add_format() for Content-Format of the payload. Options *must* * be written in order by option number (see "CoAP option numbers" in * [CoAP defines](group__net__coap.html)). * -# Call coap_opt_finish() to complete the PDU metadata. Retain the returned * metadata length. * -# Write the notification payload, starting at the updated _payload_ pointer * in the coap_pkt_t, for up to _payload_len_ bytes. * * Finally, call gcoap_obs_send() for the resource, with the sum of the * metadata length and payload length for the representation. * * ### Other considerations ### * * By default, the value for the Observe option in a notification is three * bytes long. For resources that change slowly, this length can be reduced via * CONFIG_GCOAP_OBS_VALUE_WIDTH. * * A client always may re-register for a resource with the same token or with * a new token to indicate continued interest in receiving notifications about * it. Of course the client must not already be using any new token in the * registration for a different resource. Successful registration always is * indicated by the presence of the Observe option in the response. * * To cancel registration, the server expects to receive a GET request with * the Observe option value set to 1. The server does not support cancellation * via a reset (RST) response to a non-confirmable notification. * * ## Block Operation ## * * gcoap provides for both server side and client side blockwise messaging for * requests and responses. This section outlines how to write a message for * each situation. * * ### CoAP server GET handling ### * * The server must slice the full response body into smaller payloads, and * identify the slice with a Block2 option. This implementation toggles the * actual writing of data as it passes over the code for the full response * body. See the _riot_block2_handler() example in * [gcoap-block-server](https://github.com/kb2ma/riot-apps/blob/kb2ma-master/gcoap-block-server/gcoap_block.c), * which implements the sequence described below. * * - Use coap_block2_init() to initialize a _slicer_ struct from the Block2 * option in the request. The slicer tracks boundaries while writing the * payload. If no option present in the initial request, the init function * defaults to a payload size of 16 bytes. * - Use gcoap_resp_init() to begin the response. * - Use coap_opt_add_block2() to write the Block2 option from the slicer. Use * 1 as a default for the _more_ parameter. At this point, we don't know yet * if this message will be the last in the block exchange. However, we must * add the block option at this location in the message. * - Use coap_opt_finish() to add a payload marker. * - Add the payload using the `coap_blockwise_put_xxx()` functions. The slicer * knows the current position in the overall body of the response. It writes * only the portion of the body specified by the block number and block size * in the slicer. * - Finally, use coap_block2_finish() to finalize the block option with the * proper value for the _more_ parameter. * * ### CoAP server PUT/POST handling ### * * The server must ack each blockwise portion of the response body received * from the client by writing a Block1 option in the response. See the * _sha256_handler() example in * [gcoap-block-server](https://github.com/kb2ma/riot-apps/blob/kb2ma-master/gcoap-block-server/gcoap_block.c), * which implements the sequence described below. * * - Use coap_get_block1() to initialize a block1 struct from the request. * - Determine the response code. If the block1 _more_ attribute is 1, use * COAP_CODE_CONTINUE to request more responses. Otherwise, use * COAP_CODE_CHANGED to indicate a successful transfer. * - Use gcoap_resp_init() to begin the response, including the response code. * - Use coap_opt_add_block1_control() to write the Block1 option. * - Use coap_opt_finish() to determine the length of the PDU. If appropriate, * use the COAP_OPT_FINISH_PAYLOAD parameter and then write the payload. * * ### CoAP client GET request ### * * The client requests a specific blockwise payload from the overall body by * writing a Block2 option in the request. See _resp_handler() in the * [gcoap](https://github.com/RIOT-OS/RIOT/blob/master/examples/gcoap/gcoap_cli.c) * example in the RIOT distribution, which implements the sequence described * below. * * - For the first request, use coap_block_object_init() to initialize a new * block1 struct. For subsequent requests, first use coap_get_block2() to * read the Block2 option in the response to the previous request. If the * _more_ attribute indicates no more blocks, you are done. * - The gcoap example actually does _not_ include a Block2 option in the * original request, but the server response includes a blockwise response * with a Block2 option anyway. On the other hand, this example shows how * blockwise messaging can be supported in a generic way. * - If more blocks are available, use gcoap_req_init() to create a new * request. * - Increment the _blknum_ attribute in the block1 struct from the previous * response to request the next blockwise payload. * - Use coap_opt_put_block2_control() to write the Block2 option to the * request. * - Use coap_opt_finish() to determine the length of the PDU. * * ### CoAP client PUT/POST request ### * * The client pushes a specific blockwise payload from the overall body to the * server by writing a Block1 option in the request. See _do_block_post() in * the [gcoap-block-client](https://github.com/kb2ma/riot-apps/blob/kb2ma-master/gcoap-block-client/gcoap_block.c) * example, which implements the sequence described below. * * - For the first request, use coap_block_slicer_init() to initialize a * _slicer_ struct with the desired block number and block size. For * subsequent requests, first read the response from the server to the * previous request. If the response code is COAP_CODE_CONTINUE, then * increment the last block number sent when initializing the slicer struct * for the next request. * - Use gcoap_req_init() to initialize the request. * - Use coap_opt_add_block1() to add the Block1 option from the slicer. Use 1 * as a default for the _more_ parameter. At this point, we don't know yet if * this message will be the last in the block exchange. However, we must add * the block option at this location in the message. * - Use coap_opt_finish() with COAP_OPT_FINISH_PAYLOAD to write the payload * marker. * - Add the payload using the `coap_blockwise_put_xxx()` functions. The slicer * knows the current position in the overall body of the response. It writes * only the portion of the body specified by the block number and block size * in the slicer. * - Finally, use coap_block1_finish() to finalize the block option with the * proper value for the _more_ parameter. * * ## Implementation Notes ## * * ### Waiting for a response ### * * We take advantage of RIOT's asynchronous messaging by using an xtimer to wait * for a response, so the gcoap thread does not block while waiting. The user is * notified via the same callback, whether the message is received or the wait * times out. We track the response with an entry in the * `_coap_state.open_reqs` array. * * ## Implementation Status ## * gcoap includes server and client capability. Available features include: * * - Message Type: Supports non-confirmable (NON) messaging. Additionally * provides a callback on timeout. Provides piggybacked ACK response to a * confirmable (CON) request. * - Observe extension: Provides server-side registration and notifications. * - Server and Client provide helper functions for writing the * response/request. See the CoAP topic in the source documentation for * details. See the gcoap example for sample implementations. * - Server allows an application to register a 'listener', which includes an * array of endpoint paths and function callbacks used to write a response. * - Server listens on a port at startup; defaults to 5683. * - Client operates asynchronously; sends request and then handles response * in a user provided callback. * - Client generates token; length defined at compile time. * - Options: Supports Content-Format for payload. * * @{ * * @file * @brief gcoap definition * * @author Ken Bannister * @author Hauke Petersen */ #ifndef NET_GCOAP_H #define NET_GCOAP_H #include #include "net/ipv6/addr.h" #include "net/sock/udp.h" #include "net/nanocoap.h" #include "xtimer.h" #ifdef __cplusplus extern "C" { #endif /** * @defgroup net_gcoap_conf Gcoap compile configurations * @ingroup net_gcoap * @ingroup config * @{ */ /** * @brief Size for module message queue */ #ifndef CONFIG_GCOAP_MSG_QUEUE_SIZE #define CONFIG_GCOAP_MSG_QUEUE_SIZE (4) #endif /** * @brief Server port; use RFC 7252 default if not defined */ #ifndef CONFIG_GCOAP_PORT #define CONFIG_GCOAP_PORT (5683) #endif /** * @brief Size of the buffer used to build a CoAP request or response */ #ifndef CONFIG_GCOAP_PDU_BUF_SIZE #define CONFIG_GCOAP_PDU_BUF_SIZE (128) #endif /** * @brief Reduce payload length by this value for a request * * Accommodates writing Content-Format option in gcoap_finish(). May set to * zero if function not used. * * @deprecated Will not be available after the 2020.07 release. Used only by * gcoap_finish(), which also is deprecated. */ #ifndef CONFIG_GCOAP_REQ_OPTIONS_BUF #define CONFIG_GCOAP_REQ_OPTIONS_BUF (4) #endif /** * @brief Reduce payload length by this value for a response * * Accommodates writing Content-Format option in gcoap_finish(). May set to * zero if function not used. * * @deprecated Will not be available after the 2020.07 release. Used only by * gcoap_finish(), which also is deprecated. */ #ifndef CONFIG_GCOAP_RESP_OPTIONS_BUF #define CONFIG_GCOAP_RESP_OPTIONS_BUF (4) #endif /** * @brief Reduce payload length by this value for an observe notification * * Accommodates writing Content-Format option in gcoap_finish(). May set to * zero if function not used. * * @deprecated Will not be available after the 2020.07 release. Used only by * gcoap_finish(), which also is deprecated. */ #ifndef CONFIG_GCOAP_OBS_OPTIONS_BUF #define CONFIG_GCOAP_OBS_OPTIONS_BUF (4) #endif /** * @brief Maximum number of requests awaiting a response */ #ifndef CONFIG_GCOAP_REQ_WAITING_MAX #define CONFIG_GCOAP_REQ_WAITING_MAX (2) #endif /** @} */ /** * @brief Maximum length in bytes for a token */ #define GCOAP_TOKENLEN_MAX (8) /** * @brief Maximum length in bytes for a header, including the token */ #define GCOAP_HEADER_MAXLEN (sizeof(coap_hdr_t) + GCOAP_TOKENLEN_MAX) /** * @ingroup net_gcoap_conf * @brief Length in bytes for a token * * Value must be in the range 0 to @ref GCOAP_TOKENLEN_MAX. */ #ifndef CONFIG_GCOAP_TOKENLEN #define CONFIG_GCOAP_TOKENLEN (2) #endif /** * @brief Marks the boundary between header and payload */ #define GCOAP_PAYLOAD_MARKER (0xFF) /** * @ingroup net_gcoap_conf * @brief Disables gcoap startup during system auto init * * If disabled, gcoap_init() must be called by some other means. */ #ifndef CONFIG_GCOAP_NO_AUTO_INIT #define CONFIG_GCOAP_NO_AUTO_INIT 0 #endif /** * @name States for the memo used to track waiting for a response * @{ */ #define GCOAP_MEMO_UNUSED (0) /**< This memo is unused */ #define GCOAP_MEMO_WAIT (1) /**< Request sent; awaiting response */ #define GCOAP_MEMO_RESP (2) /**< Got response */ #define GCOAP_MEMO_TIMEOUT (3) /**< Timeout waiting for response */ #define GCOAP_MEMO_ERR (4) /**< Error processing response packet */ /** @} */ /** * @brief Value for send_limit in request memo when non-confirmable type */ #define GCOAP_SEND_LIMIT_NON (-1) /** * @ingroup net_gcoap_conf * @brief Time in usec that the event loop waits for an incoming CoAP message */ #ifndef CONFIG_GCOAP_RECV_TIMEOUT #define CONFIG_GCOAP_RECV_TIMEOUT (1 * US_PER_SEC) #endif #ifdef DOXYGEN /** * @ingroup net_gcoap_conf * @brief Turns off retransmission backoff when defined (undefined per default) * * In normal operations the timeout between retransmissions doubles. When * CONFIG_GCOAP_NO_RETRANS_BACKOFF is defined this doubling does not happen. * * @see COAP_ACK_TIMEOUT * @see COAP_ACK_VARIANCE */ #define CONFIG_GCOAP_NO_RETRANS_BACKOFF #endif /** * @ingroup net_gcoap_conf * @brief Default time to wait for a non-confirmable response [in usec] * * Set to 0 to disable timeout. */ #ifndef CONFIG_GCOAP_NON_TIMEOUT #define CONFIG_GCOAP_NON_TIMEOUT (5000000U) #endif /** * @brief Identifies waiting timed out for a response to a sent message */ #define GCOAP_MSG_TYPE_TIMEOUT (0x1501) /** * @brief Identifies a request to interrupt listening for an incoming message * on a sock * * Allows the event loop to process IPC messages. */ #define GCOAP_MSG_TYPE_INTR (0x1502) /** * @ingroup net_gcoap_conf * @brief Maximum number of Observe clients */ #ifndef CONFIG_GCOAP_OBS_CLIENTS_MAX #define CONFIG_GCOAP_OBS_CLIENTS_MAX (2) #endif /** * @ingroup net_gcoap_conf * @brief Maximum number of registrations for Observable resources */ #ifndef CONFIG_GCOAP_OBS_REGISTRATIONS_MAX #define CONFIG_GCOAP_OBS_REGISTRATIONS_MAX (2) #endif /** * @name States for the memo used to track Observe registrations * @{ */ #define GCOAP_OBS_MEMO_UNUSED (0) /**< This memo is unused */ #define GCOAP_OBS_MEMO_IDLE (1) /**< Registration OK; no current activity */ #define GCOAP_OBS_MEMO_PENDING (2) /**< Resource changed; notification pending */ /** @} */ /** * @ingroup net_gcoap_conf * @brief Width in bytes of the Observe option value for a notification * * This width is used to determine the length of the 'tick' used to measure * the time between observable changes to a resource. A tick is expressed * internally as GCOAP_OBS_TICK_EXPONENT, which is the base-2 log value of the * tick length in microseconds. * * The canonical setting for the value width is 3 (exponent 5), which results * in a tick length of 32 usec, per sec. 3.4, 4.4 of the RFC. Width 2 * (exponent 16) results in a tick length of ~65 msec, and width 1 (exponent * 24) results in a tick length of ~17 sec. * * The tick length must be short enough so that the Observe value strictly * increases for each new notification. The purpose of the value is to allow a * client to detect message reordering within the network latency period (128 * sec). For resources that change only slowly, the reduced message length is * useful when packet size is limited. */ #ifndef CONFIG_GCOAP_OBS_VALUE_WIDTH #define CONFIG_GCOAP_OBS_VALUE_WIDTH (3) #endif /** * @brief See CONFIG_GCOAP_OBS_VALUE_WIDTH */ #if (CONFIG_GCOAP_OBS_VALUE_WIDTH == 3) #define GCOAP_OBS_TICK_EXPONENT (5) #elif (CONFIG_GCOAP_OBS_VALUE_WIDTH == 2) #define GCOAP_OBS_TICK_EXPONENT (16) #elif (CONFIG_GCOAP_OBS_VALUE_WIDTH == 1) #define GCOAP_OBS_TICK_EXPONENT (24) #endif /** * @name Return values for gcoap_obs_init() * @{ */ #define GCOAP_OBS_INIT_OK (0) #define GCOAP_OBS_INIT_ERR (-1) #define GCOAP_OBS_INIT_UNUSED (-2) /** @} */ /** * @brief Stack size for module thread */ #ifndef GCOAP_STACK_SIZE #define GCOAP_STACK_SIZE (THREAD_STACKSIZE_DEFAULT + DEBUG_EXTRA_STACKSIZE \ + sizeof(coap_pkt_t)) #endif /** * @ingroup net_gcoap_conf * @brief Count of PDU buffers available for resending confirmable messages */ #ifndef CONFIG_GCOAP_RESEND_BUFS_MAX #define CONFIG_GCOAP_RESEND_BUFS_MAX (1) #endif /** * @name Bitwise positional flags for encoding resource links * @{ */ #define COAP_LINK_FLAG_INIT_RESLIST (1) /**< initialize as for first resource * in a list */ /** @} */ /** * @brief Context information required to write a resource link */ typedef struct { unsigned content_format; /**< link format */ size_t link_pos; /**< position of link within listener */ uint16_t flags; /**< encoder switches; see GCOAP_LINK_FLAG_* constants */ } coap_link_encoder_ctx_t; /** * @brief Handler function to write a resource link * * @param[in] resource Resource for link * @param[out] buf Buffer on which to write; may be null * @param[in] maxlen Remaining length for @p buf * @param[in] context Contextual information on what/how to write * * @return count of bytes written to @p buf (or writable if @p buf is null) * @return -1 on error */ typedef ssize_t (*gcoap_link_encoder_t)(const coap_resource_t *resource, char *buf, size_t maxlen, coap_link_encoder_ctx_t *context); /** * @brief A modular collection of resources for a server */ typedef struct gcoap_listener { const coap_resource_t *resources; /**< First element in the array of * resources; must order alphabetically */ size_t resources_len; /**< Length of array */ gcoap_link_encoder_t link_encoder; /**< Writes a link for a resource */ struct gcoap_listener *next; /**< Next listener in list */ } gcoap_listener_t; /** * @brief Forward declaration of the request memo type */ typedef struct gcoap_request_memo gcoap_request_memo_t; /** * @brief Handler function for a server response, including the state for the * originating request * * If request timed out, the packet header is for the request. */ typedef void (*gcoap_resp_handler_t)(const gcoap_request_memo_t *memo, coap_pkt_t* pdu, const sock_udp_ep_t *remote); /** * @brief Extends request memo for resending a confirmable request. */ typedef struct { uint8_t *pdu_buf; /**< Buffer containing the PDU */ size_t pdu_len; /**< Length of pdu_buf */ } gcoap_resend_t; /** * @brief Memo to handle a response for a request */ struct gcoap_request_memo { unsigned state; /**< State of this memo, a GCOAP_MEMO... */ int send_limit; /**< Remaining resends, 0 if none; GCOAP_SEND_LIMIT_NON if non-confirmable */ union { uint8_t hdr_buf[GCOAP_HEADER_MAXLEN]; /**< Copy of PDU header, if no resends */ gcoap_resend_t data; /**< Endpoint and PDU buffer, for resend */ } msg; /**< Request message data; if confirmable, supports resending message */ sock_udp_ep_t remote_ep; /**< Remote endpoint */ gcoap_resp_handler_t resp_handler; /**< Callback for the response */ void *context; /**< ptr to user defined context data */ xtimer_t response_timer; /**< Limits wait for response */ msg_t timeout_msg; /**< For response timer */ }; /** * @brief Memo for Observe registration and notifications */ typedef struct { sock_udp_ep_t *observer; /**< Client endpoint; unused if null */ const coap_resource_t *resource; /**< Entity being observed */ uint8_t token[GCOAP_TOKENLEN_MAX]; /**< Client token for notifications */ unsigned token_len; /**< Actual length of token attribute */ } gcoap_observe_memo_t; /** * @brief Initializes the gcoap thread and device * * Must call once before first use. * * @return PID of the gcoap thread on success. * @return -EEXIST, if thread already has been created. * @return -EINVAL, if the IP port already is in use. */ kernel_pid_t gcoap_init(void); /** * @brief Starts listening for resource paths * * @param[in] listener Listener containing the resources. */ void gcoap_register_listener(gcoap_listener_t *listener); /** * @brief Initializes a CoAP request PDU on a buffer. * * @param[out] pdu Request metadata * @param[out] buf Buffer containing the PDU * @param[in] len Length of the buffer * @param[in] code Request code, one of COAP_METHOD_XXX * @param[in] path Resource path, may be NULL * * @pre @p path must start with `/` if not NULL * * @return 0 on success * @return < 0 on error */ int gcoap_req_init(coap_pkt_t *pdu, uint8_t *buf, size_t len, unsigned code, const char *path); /** * @brief Finishes formatting a CoAP PDU after the payload has been written * * Assumes the PDU has been initialized with a gcoap_xxx_init() function, like * gcoap_req_init(). * * @deprecated Will not be available after the 2020.07 release. Use * coap_opt_finish() instead. * * @warning To use this function, you only may have added an Option with * option number less than COAP_OPT_CONTENT_FORMAT. Otherwise, use the * struct-based API described with @link net_nanocoap nanocoap. @endlink With * this API, you specify the format with coap_opt_add_uint(), prepare for the * payload with coap_opt_finish(), and then write the payload. * * @param[in,out] pdu Request metadata * @param[in] payload_len Length of the payload, or 0 if none * @param[in] format Format code for the payload; use COAP_FORMAT_NONE if * not specified * * @return size of the PDU * @return < 0 on error */ ssize_t gcoap_finish(coap_pkt_t *pdu, size_t payload_len, unsigned format); /** * @brief Writes a complete CoAP request PDU when there is not a payload * * @param[in,out] pdu Request metadata * @param[in,out] buf Buffer containing the PDU * @param[in] len Length of the buffer * @param[in] code Request code: GCOAP_[GET|POST|PUT|DELETE] * @param[in] path Resource path, *must* start with '/' * * @return size of the PDU within the buffer * @return < 0 on error */ static inline ssize_t gcoap_request(coap_pkt_t *pdu, uint8_t *buf, size_t len, unsigned code, char *path) { return (gcoap_req_init(pdu, buf, len, code, path) == 0) ? coap_opt_finish(pdu, COAP_OPT_FINISH_NONE) : -1; } /** * @brief Sends a buffer containing a CoAP request to the provided endpoint * * @param[in] buf Buffer containing the PDU * @param[in] len Length of the buffer * @param[in] remote Destination for the packet * @param[in] resp_handler Callback when response received, may be NULL * @param[in] context User defined context passed to the response handler * * @return length of the packet * @return 0 if cannot send */ size_t gcoap_req_send(const uint8_t *buf, size_t len, const sock_udp_ep_t *remote, gcoap_resp_handler_t resp_handler, void *context); /** * @brief Initializes a CoAP response packet on a buffer * * Initializes payload location within the buffer based on packet setup. * * @param[out] pdu Response metadata * @param[in] buf Buffer containing the PDU * @param[in] len Length of the buffer * @param[in] code Response code * * @return 0 on success * @return < 0 on error */ int gcoap_resp_init(coap_pkt_t *pdu, uint8_t *buf, size_t len, unsigned code); /** * @brief Writes a complete CoAP response PDU when there is no payload * * @param[out] pdu Response metadata * @param[out] buf Buffer containing the PDU * @param[in] len Length of the buffer * @param[in] code Response code * * @return size of the PDU within the buffer * @return < 0 on error */ static inline ssize_t gcoap_response(coap_pkt_t *pdu, uint8_t *buf, size_t len, unsigned code) { return (gcoap_resp_init(pdu, buf, len, code) == 0) ? coap_opt_finish(pdu, COAP_OPT_FINISH_NONE) : -1; } /** * @brief Initializes a CoAP Observe notification packet on a buffer, for the * observer registered for a resource * * First verifies that an observer has been registered for the resource. * * @param[out] pdu Notification metadata * @param[out] buf Buffer containing the PDU * @param[in] len Length of the buffer * @param[in] resource Resource for the notification * * @return GCOAP_OBS_INIT_OK on success * @return GCOAP_OBS_INIT_ERR on error * @return GCOAP_OBS_INIT_UNUSED if no observer for resource */ int gcoap_obs_init(coap_pkt_t *pdu, uint8_t *buf, size_t len, const coap_resource_t *resource); /** * @brief Sends a buffer containing a CoAP Observe notification to the * observer registered for a resource * * Assumes a single observer for a resource. * * @param[in] buf Buffer containing the PDU * @param[in] len Length of the buffer * @param[in] resource Resource to send * * @return length of the packet * @return 0 if cannot send */ size_t gcoap_obs_send(const uint8_t *buf, size_t len, const coap_resource_t *resource); /** * @brief Provides important operational statistics * * Useful for monitoring. * * @return count of unanswered requests */ uint8_t gcoap_op_state(void); /** * @brief Get the resource list, currently only `CoRE Link Format` * (COAP_FORMAT_LINK) supported * * If @p buf := NULL, nothing will be written but the size of the resulting * resource list is computed and returned. * * @param[out] buf output buffer to write resource list into, my be NULL * @param[in] maxlen length of @p buf, ignored if @p buf is NULL * @param[in] cf content format to use for the resource list, currently * only COAP_FORMAT_LINK supported * * @todo add support for `JSON CoRE Link Format` * @todo add support for 'CBOR CoRE Link Format` * * @return the number of bytes written to @p buf * @return -1 on error */ int gcoap_get_resource_list(void *buf, size_t maxlen, uint8_t cf); /** * @brief Writes a resource in CoRE Link Format to a provided buffer. * * This default implementation only writes the resource path. * * @param[in] resource resource to write * @param[out] buf output buffer to write link into, may be null * @param[in] maxlen length of @p buf, ignored if @p buf is NULL * @param[in] context other parameters that affect how link is written * * @return count of bytes written to @p buf (or writable if @p buf is null) * @return -1 on error */ ssize_t gcoap_encode_link(const coap_resource_t *resource, char *buf, size_t maxlen, coap_link_encoder_ctx_t *context); /** * @brief Adds a single Uri-Query option to a CoAP request * * To add multiple Uri-Query options, simply call this function multiple times. * The Uri-Query options will be added in the order those calls. * * @param[out] pdu The package that is being build * @param[in] key Key to add to the query string * @param[in] val Value to assign to @p key (may be NULL) * * @pre ((pdu != NULL) && (key != NULL)) * * @return overall length of new query string * @return -1 on error */ int gcoap_add_qstring(coap_pkt_t *pdu, const char *key, const char *val); #ifdef __cplusplus } #endif #endif /* NET_GCOAP_H */ /** @} */