/* * Copyright (C) 2014-2015 Freie Universität Berlin * 2016 UC Berkeley * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup boards_hamilton * @{ * * @file * @brief Configuration of CPU peripherals for the Hamilton mote * * @author Thomas Eichinger * @author Hauke Petersen * @author Peter Kietzmann * @author Michael Andersen * @author Hyung-Sin Kim */ #ifndef PERIPH_CONF_H #define PERIPH_CONF_H #include #include "cpu.h" #include "periph_cpu.h" #ifdef __cplusplus extern "C" { #endif /** * @name External oscillator and clock configuration * * There are three choices for selection of CORECLOCK: * * - usage of the 48 MHz DFLL fed by external oscillator running at 32 kHz * - usage of the PLL fed by the internal 8MHz oscillator divided by 8 * - usage of the internal 8MHz oscillator directly, divided by N if needed * * * The PLL option allows for the usage of a wider frequency range and a more * stable clock with less jitter. This is why this option is default. * * The target frequency is computed from the PLL multiplier and the PLL divisor. * Use the following formula to compute your values: * * CORECLOCK = ((PLL_MUL + 1) * 1MHz) / PLL_DIV * * NOTE: The PLL circuit does not run with less than 32MHz while the maximum PLL * frequency is 96MHz. So PLL_MUL must be between 31 and 95! * * * The internal Oscillator used directly can lead to a slightly better power * efficiency to the cost of a less stable clock. Use this option when you know * what you are doing! The actual core frequency is adjusted as follows: * * CORECLOCK = 8MHz / DIV * * NOTE: A core clock frequency below 1MHz is not recommended * * @{ */ #define CLOCK_USE_PLL (1) #if CLOCK_USE_PLL /* edit these values to adjust the PLL output frequency */ #define CLOCK_PLL_MUL (47U) /* must be >= 31 & <= 95 */ #define CLOCK_PLL_DIV (1U) /* adjust to your needs */ /* generate the actual used core clock frequency */ #define CLOCK_CORECLOCK (((CLOCK_PLL_MUL + 1) * 1000000U) / CLOCK_PLL_DIV) #elif CLOCK_USE_XOSC32_DFLL /* Settings for 32 kHz external oscillator and 48 MHz DFLL */ #define CLOCK_CORECLOCK (48000000U) #define CLOCK_XOSC32K (32768UL) #define CLOCK_8MHZ (1) #define GEN2_ULP32K (1) #else /* edit this value to your needs */ #define CLOCK_DIV (1U) /* generate the actual core clock frequency */ #define CLOCK_CORECLOCK (8000000 / CLOCK_DIV) #endif /** @} */ /** * @name RTC configuration * @{ */ #define RTC_NUMOF (1U) #define RTC_DEV RTC->MODE2 /** @} */ /** * @name RTT configuration * @{ */ #define RTT_NUMOF (1U) #define RTT_DEV RTC->MODE0 #define RTT_IRQ RTC_IRQn #define RTT_IRQ_PRIO 10 #define RTT_ISR isr_rtc #define RTT_MAX_VALUE (0xffffffff) #define RTT_FREQUENCY (32768U) /* in Hz. For changes see `rtt.c` */ #define RTT_RUNSTDBY (1) /* Keep RTT running in sleep states */ /** @} */ /** * @name Timer peripheral configuration * @{ */ static const tc32_conf_t timer_config[] = { { /* Timer 0 - System Clock */ .dev = TC3, .irq = TC3_IRQn, .pm_mask = PM_APBCMASK_TC3, .gclk_ctrl = GCLK_CLKCTRL_ID_TCC2_TC3, #if CLOCK_USE_PLL || CLOCK_USE_XOSC32_DFLL .gclk_src = GCLK_CLKCTRL_GEN(1), .prescaler = TC_CTRLA_PRESCALER_DIV1, #else .gclk_src = GCLK_CLKCTRL_GEN(0), .prescaler = TC_CTRLA_PRESCALER_DIV8, #endif .flags = TC_CTRLA_MODE_COUNT16, }, { /* Timer 1 */ .dev = TC4, .irq = TC4_IRQn, .pm_mask = PM_APBCMASK_TC4 | PM_APBCMASK_TC5, .gclk_ctrl = GCLK_CLKCTRL_ID_TC4_TC5, #if CLOCK_USE_PLL || CLOCK_USE_XOSC32_DFLL .gclk_src = GCLK_CLKCTRL_GEN(1), .prescaler = TC_CTRLA_PRESCALER_DIV1, #else .gclk_src = GCLK_CLKCTRL_GEN(0), .prescaler = TC_CTRLA_PRESCALER_DIV8, #endif .flags = TC_CTRLA_MODE_COUNT32, } }; #define TIMER_0_MAX_VALUE 0xffff /* interrupt function name mapping */ #define TIMER_0_ISR isr_tc3 #define TIMER_1_ISR isr_tc4 #define TIMER_NUMOF (sizeof(timer_config) / sizeof(timer_config[0])) /** @} */ /** * @name ADC Configuration * @{ */ #define ADC_0_EN 1 #define ADC_MAX_CHANNELS 14 /* ADC 0 device configuration */ #define ADC_0_DEV ADC #define ADC_0_IRQ ADC_IRQn /* ADC 0 Default values */ #define ADC_0_CLK_SOURCE 0 /* GCLK_GENERATOR_0 */ #define ADC_0_PRESCALER ADC_CTRLB_PRESCALER_DIV512 #define ADC_0_NEG_INPUT ADC_INPUTCTRL_MUXNEG_GND #define ADC_0_GAIN_FACTOR_DEFAULT ADC_INPUTCTRL_GAIN_1X #define ADC_0_REF_DEFAULT ADC_REFCTRL_REFSEL_INT1V static const adc_conf_chan_t adc_channels[] = { /* port, pin, muxpos */ {GPIO_PIN(PA, 6), ADC_INPUTCTRL_MUXPOS_PIN6}, {GPIO_PIN(PA, 7), ADC_INPUTCTRL_MUXPOS_PIN7}, {GPIO_PIN(PA, 8), ADC_INPUTCTRL_MUXPOS_PIN16}, }; #define ADC_0_CHANNELS (3U) #define ADC_NUMOF ADC_0_CHANNELS /** @} */ /** * @name PWM configuration * @{ */ #define PWM_0_EN 1 #define PWM_1_EN 1 #define PWM_NUMOF (PWM_0_EN + PWM_1_EN) #define PWM_MAX_CHANNELS 2 /* PWM device configuration */ #if PWM_NUMOF static const pwm_conf_t pwm_config[] = { #if PWM_0_EN {TCC1, { /* GPIO pin, MUX value, TCC channel */ {GPIO_PIN(PA, 6), GPIO_MUX_E, 0}, {GPIO_PIN(PA, 7), GPIO_MUX_E, 1} }}, #endif #if PWM_1_EN {TCC0, { /* GPIO pin, MUX value, TCC channel */ {GPIO_PIN(PA, 18), GPIO_MUX_F, 2}, {GPIO_PIN(PA, 19), GPIO_MUX_F, 3} }}, #endif }; #endif /** @} */ /** * @name SPI configuration * @{ */ static const spi_conf_t spi_config[] = { { .dev = &SERCOM4->SPI, .miso_pin = GPIO_PIN(PC, 19), .mosi_pin = GPIO_PIN(PB, 30), .clk_pin = GPIO_PIN(PC, 18), .miso_mux = GPIO_MUX_F, .mosi_mux = GPIO_MUX_F, .clk_mux = GPIO_MUX_F, .miso_pad = SPI_PAD_MISO_0, .mosi_pad = SPI_PAD_MOSI_2_SCK_3 } }; #define SPI_NUMOF (sizeof(spi_config) / sizeof(spi_config[0])) /** @} */ /** * @name I2C configuration * @{ */ static const i2c_conf_t i2c_config[] = { { .dev = &(SERCOM3->I2CM), .speed = I2C_SPEED_FAST, .scl_pin = GPIO_PIN(PA, 17), .sda_pin = GPIO_PIN(PA, 16), .mux = GPIO_MUX_D, .gclk_src = GCLK_CLKCTRL_GEN_GCLK0, .flags = I2C_FLAG_NONE } }; #define I2C_NUMOF (sizeof(i2c_config) / sizeof(i2c_config[0])) /** * @name Random Number Generator configuration * @{ */ #define RANDOM_NUMOF (0U) /** @} */ #ifdef __cplusplus } #endif #endif /* PERIPH_CONF_H */ /** @} */