/* * Copyright (C) 2014 FU Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32f2 * @ingroup drivers_periph_i2c * @{ * * @file * @brief Low-level I2C driver implementation * * @note This implementation only implements the 7-bit addressing mode. * * @author Toon Stegen * @author Vincent Dupont * * @} */ #include #include "cpu.h" #include "irq.h" #include "mutex.h" #include "periph_conf.h" #include "periph/i2c.h" #define ENABLE_DEBUG (0) #include "debug.h" #define I2C_MAX_LOOP_CNT 10000 /* static function definitions */ static int _read_bytes(I2C_TypeDef *i2c, uint8_t address, uint8_t *data, int length, uint8_t *err); static void _i2c_init(I2C_TypeDef *i2c, int ccr); static void _pin_config(GPIO_TypeDef *port_scl, GPIO_TypeDef *port_sda, int pin_scl, int pin_sda); static int _start(I2C_TypeDef *dev, uint8_t address, uint8_t rw_flag, uint8_t *err); static inline void _clear_addr(I2C_TypeDef *dev); static inline int _write(I2C_TypeDef *dev, const uint8_t *data, int length, uint8_t *err); static inline int _stop(I2C_TypeDef *dev, uint8_t *err); static inline int _wait_ready(I2C_TypeDef *dev); /** * @brief Array holding one pre-initialized mutex for each I2C device */ static mutex_t locks[] = { #if I2C_0_EN [I2C_0] = MUTEX_INIT, #endif #if I2C_1_EN [I2C_1] = MUTEX_INIT, #endif #if I2C_2_EN [I2C_2] = MUTEX_INIT, #endif #if I2C_3_EN [I2C_3] = MUTEX_INIT #endif }; static uint8_t err_flag[] = { #if I2C_0_EN [I2C_0] = 0x00, #endif #if I2C_1_EN [I2C_1] = 0x00, #endif #if I2C_2_EN [I2C_2] = 0x00, #endif #if I2C_3_EN [I2C_3] = 0x00 #endif }; int i2c_init_master(i2c_t dev, i2c_speed_t speed) { I2C_TypeDef *i2c; GPIO_TypeDef *port_scl; GPIO_TypeDef *port_sda; int pin_scl = 0, pin_sda = 0; int ccr; /* read speed configuration */ switch (speed) { case I2C_SPEED_NORMAL: ccr = I2C_APBCLK / 200000; break; case I2C_SPEED_FAST: ccr = I2C_APBCLK / 800000; break; default: return -2; } /* read static device configuration */ switch (dev) { #if I2C_0_EN case I2C_0: i2c = I2C_0_DEV; port_scl = I2C_0_SCL_PORT; pin_scl = I2C_0_SCL_PIN; port_sda = I2C_0_SDA_PORT; pin_sda = I2C_0_SDA_PIN; I2C_0_CLKEN(); I2C_0_SCL_CLKEN(); I2C_0_SDA_CLKEN(); NVIC_SetPriority(I2C_0_ERR_IRQ, I2C_IRQ_PRIO); NVIC_EnableIRQ(I2C_0_ERR_IRQ); break; #endif default: return -1; } /* configure pins */ _pin_config(port_scl, port_sda, pin_scl, pin_sda); /* configure device */ _i2c_init(i2c, ccr); return 0; } static void _i2c_init(I2C_TypeDef *i2c, int ccr) { /* disable device and set ACK bit */ i2c->CR1 = I2C_CR1_ACK; /* configure I2C clock */ i2c->CR2 = (I2C_APBCLK / 1000000) | I2C_CR2_ITERREN; i2c->CCR = ccr; i2c->TRISE = (I2C_APBCLK / 1000000) + 1; /* configure device */ i2c->OAR1 |= (1 << 14); /* datasheet: bit 14 should be kept 1 */ i2c->OAR1 &= ~I2C_OAR1_ADDMODE; /* make sure we are in 7-bit address mode */ /* enable device */ i2c->CR1 |= I2C_CR1_PE; } static void _pin_config(GPIO_TypeDef *port_scl, GPIO_TypeDef *port_sda, int pin_scl, int pin_sda) { /* Set GPIOs to AF mode */ port_scl->MODER &= ~(3 << (2 * pin_scl)); port_scl->MODER |= (2 << (2 * pin_scl)); port_sda->MODER &= ~(3 << (2 * pin_sda)); port_sda->MODER |= (2 << (2 * pin_sda)); /* Set speed high*/ port_scl->OSPEEDR |= (3 << (2 * pin_scl)); port_sda->OSPEEDR |= (3 << (2 * pin_sda)); /* Set to push-pull configuration open drain*/ port_scl->OTYPER |= (1 << pin_scl); port_sda->OTYPER |= (1 << pin_sda); /* Enable pull-up resistors */ port_scl->PUPDR &= ~(3 << (2 * pin_scl)); port_sda->PUPDR &= ~(3 << (2 * pin_sda)); if (I2C_0_SCL_PULLUP) { port_scl->PUPDR |= (1 << (2 * pin_scl)); } if (I2C_0_SDA_PULLUP) { port_sda->PUPDR |= (1 << (2 * pin_sda)); } /* Configure GPIOs to for the I2C alternate function */ if (pin_scl < 8) { port_scl->AFR[0] &= ~(0xf << (4 * pin_scl)); port_scl->AFR[0] |= (I2C_0_SCL_AF << (4 * pin_scl)); } else { port_scl->AFR[1] &= ~(0xf << (4 * (pin_scl - 8))); port_scl->AFR[1] |= (I2C_0_SCL_AF << (4 * (pin_scl - 8))); } if (pin_sda < 8) { port_sda->AFR[0] &= ~(0xf << (4 * pin_sda)); port_sda->AFR[0] |= (I2C_0_SDA_AF << (4 * pin_sda)); } else { port_sda->AFR[1] &= ~(0xf << (4 * (pin_sda - 8))); port_sda->AFR[1] |= (I2C_0_SDA_AF << (4 * (pin_sda - 8))); } } int i2c_acquire(i2c_t dev) { if (dev >= I2C_NUMOF) { return -1; } mutex_lock(&locks[dev]); return 0; } int i2c_release(i2c_t dev) { if (dev >= I2C_NUMOF) { return -1; } mutex_unlock(&locks[dev]); return 0; } int i2c_read_byte(i2c_t dev, uint8_t address, void *data) { return i2c_read_bytes(dev, address, data, 1); } int i2c_read_bytes(i2c_t dev, uint8_t address, void *data, int length) { I2C_TypeDef *i2c; switch (dev) { #if I2C_0_EN case I2C_0: i2c = I2C_0_DEV; break; #endif default: return -1; } int res = _wait_ready(i2c); if (res != 0) { return res; } return _read_bytes(i2c, address, data, length, &err_flag[dev]); } static inline int _wait_ready(I2C_TypeDef *dev) { /* wait for device to be ready */ DEBUG("Wait for device to be ready\n"); int cnt = 0; while ((dev->SR2 & I2C_SR2_BUSY) && cnt++ < I2C_MAX_LOOP_CNT) {} if (cnt == I2C_MAX_LOOP_CNT) { return -3; } return 0; } static int _read_bytes(I2C_TypeDef *i2c, uint8_t address, uint8_t *data, int length, uint8_t *err) { unsigned int state; int i = 0; int cnt = 0; int res; switch (length) { case 1: DEBUG("Send Slave address and wait for ADDR == 1\n"); res = _start(i2c, address, I2C_FLAG_READ, err); if (res != 0) { return res; } if (*err) { return -3; } DEBUG("Set ACK = 0\n"); i2c->CR1 &= ~(I2C_CR1_ACK); DEBUG("Clear ADDR and set STOP = 1\n"); state = irq_disable(); _clear_addr(i2c); i2c->CR1 |= (I2C_CR1_STOP); irq_restore(state); DEBUG("Wait for RXNE == 1\n"); cnt = 0; *err = 0; while (!(i2c->SR1 & I2C_SR1_RXNE) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {} if (cnt == I2C_MAX_LOOP_CNT || *err) { return -3; } DEBUG("Read received data\n"); *data = i2c->DR; /* wait until STOP is cleared by hardware */ cnt = 0; *err = 0; while ((i2c->CR1 & I2C_CR1_STOP) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {} if (cnt == I2C_MAX_LOOP_CNT) { return -3; } /* reset ACK to be able to receive new data */ i2c->CR1 |= (I2C_CR1_ACK); break; case 2: DEBUG("Send Slave address and wait for ADDR == 1\n"); res = _start(i2c, address, I2C_FLAG_READ, err); if (res != 0) { return res; } if (*err) { return -3; } DEBUG("Set POS bit\n"); i2c->CR1 |= (I2C_CR1_POS | I2C_CR1_ACK); DEBUG("Crit block: Clear ADDR bit and clear ACK flag\n"); state = irq_disable(); _clear_addr(i2c); i2c->CR1 &= ~(I2C_CR1_ACK); irq_restore(state); DEBUG("Wait for transfer to be completed\n"); cnt = 0; *err = 0; while (!(i2c->SR1 & I2C_SR1_BTF) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {} if (cnt == I2C_MAX_LOOP_CNT || *err) { return -3; } DEBUG("Crit block: set STOP and read first byte\n"); state = irq_disable(); i2c->CR1 |= (I2C_CR1_STOP); data[0] = i2c->DR; irq_restore(state); DEBUG("read second byte\n"); data[1] = i2c->DR; DEBUG("wait for STOP bit to be cleared again\n"); cnt = 0; *err = 0; while ((i2c->CR1 & I2C_CR1_STOP) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {} if (cnt == I2C_MAX_LOOP_CNT || *err) { return -3; } DEBUG("reset POS = 0 and ACK = 1\n"); i2c->CR1 &= ~(I2C_CR1_POS); i2c->CR1 |= (I2C_CR1_ACK); break; default: DEBUG("Send Slave address and wait for ADDR == 1\n"); res = _start(i2c, address, I2C_FLAG_READ, err); if (res != 0) { return res; } _clear_addr(i2c); while (i < (length - 3)) { DEBUG("Wait until byte was received\n"); cnt = 0; *err = 0; while (!(i2c->SR1 & I2C_SR1_RXNE) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {} if (cnt == I2C_MAX_LOOP_CNT || *err) { return -3; } DEBUG("Copy byte from DR\n"); data[i++] = i2c->DR; } DEBUG("Reading the last 3 bytes, waiting for BTF flag\n"); cnt = 0; *err = 0; while (!(i2c->SR1 & I2C_SR1_BTF) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)); if (cnt == I2C_MAX_LOOP_CNT || *err) { return -3; } DEBUG("Disable ACK\n"); i2c->CR1 &= ~(I2C_CR1_ACK); DEBUG("Crit block: set STOP and read N-2 byte\n"); state = irq_disable(); data[i++] = i2c->DR; i2c->CR1 |= (I2C_CR1_STOP); irq_restore(state); DEBUG("Read N-1 byte\n"); data[i++] = i2c->DR; cnt = 0; *err = 0; while (!(i2c->SR1 & I2C_SR1_RXNE) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {} if (cnt == I2C_MAX_LOOP_CNT || *err) { return -3; } DEBUG("Read last byte\n"); data[i++] = i2c->DR; DEBUG("wait for STOP bit to be cleared again\n"); cnt = 0; *err = 0; while ((i2c->CR1 & I2C_CR1_STOP) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {} if (cnt == I2C_MAX_LOOP_CNT || *err) { return -3; } DEBUG("reset POS = 0 and ACK = 1\n"); i2c->CR1 &= ~(I2C_CR1_POS); i2c->CR1 |= (I2C_CR1_ACK); } return length; } int i2c_read_reg(i2c_t dev, uint8_t address, uint8_t reg, void *data) { return i2c_read_regs(dev, address, reg, data, 1); } int i2c_read_regs(i2c_t dev, uint8_t address, uint8_t reg, void *data, int length) { I2C_TypeDef *i2c; int res; switch (dev) { #if I2C_0_EN case I2C_0: i2c = I2C_0_DEV; break; #endif default: return -1; } /* send start condition and slave address */ DEBUG("Send slave address and clear ADDR flag\n"); res = _wait_ready(i2c); if (res != 0) { return res; } res = _start(i2c, address, I2C_FLAG_WRITE, &err_flag[dev]); if (res != 0) { return res; } if (err_flag[dev]) { return -3; } _clear_addr(i2c); DEBUG("Write reg into DR\n"); i2c->DR = reg; DEBUG("Now start a read transaction\n"); return _read_bytes(i2c, address, data, length, &err_flag[dev]); } int i2c_write_byte(i2c_t dev, uint8_t address, uint8_t data) { return i2c_write_bytes(dev, address, &data, 1); } int i2c_write_bytes(i2c_t dev, uint8_t address, const void *data, int length) { I2C_TypeDef *i2c; int res; switch (dev) { #if I2C_0_EN case I2C_0: i2c = I2C_0_DEV; break; #endif default: return -1; } /* start transmission and send slave address */ DEBUG("sending start sequence\n"); res = _wait_ready(i2c); if (res != 0) { return res; } res = _start(i2c, address, I2C_FLAG_WRITE, &err_flag[dev]); if (res != 0) { return res; } if (err_flag[dev]) { return -3; } _clear_addr(i2c); /* send out data bytes */ res = _write(i2c, data, length, &err_flag[dev]); if (res != 0) { return res; } if (err_flag[dev]) { return -3; } /* end transmission */ DEBUG("Ending transmission\n"); res = _stop(i2c, &err_flag[dev]); if (res != 0) { return res; } if (err_flag[dev]) { return -3; } DEBUG("STOP condition was send out\n"); return length; } int i2c_write_reg(i2c_t dev, uint8_t address, uint8_t reg, uint8_t data) { return i2c_write_regs(dev, address, reg, &data, 1); } int i2c_write_regs(i2c_t dev, uint8_t address, uint8_t reg, const void *data, int length) { I2C_TypeDef *i2c; int res; switch (dev) { #if I2C_0_EN case I2C_0: i2c = I2C_0_DEV; break; #endif default: return -1; } /* start transmission and send slave address */ res = _wait_ready(i2c); if (res != 0) { return res; } res = _start(i2c, address, I2C_FLAG_WRITE, &err_flag[dev]); if (res != 0) { return res; } if (err_flag[dev]) { return -3; } _clear_addr(i2c); /* send register address and wait for complete transfer to be finished*/ res = _write(i2c, ®, 1, &err_flag[dev]); if (res != 0) { return res; } if (err_flag[dev]) { return -3; } /* write data to register */ res = _write(i2c, data, length, &err_flag[dev]); if (res != 0) { return res; } if (err_flag[dev]) { return -3; } /* finish transfer */ res = _stop(i2c, &err_flag[dev]); if (res != 0) { return res; } if (err_flag[dev]) { return -3; } /* return number of bytes send */ return length; } void i2c_poweron(i2c_t dev) { switch (dev) { #if I2C_0_EN case I2C_0: I2C_0_CLKEN(); break; #endif } } void i2c_poweroff(i2c_t dev) { switch (dev) { #if I2C_0_EN case I2C_0: for (int cnt = 0; ((I2C_0_DEV->SR2 & I2C_SR2_BUSY) && (cnt < I2C_MAX_LOOP_CNT)); cnt++) {} I2C_0_CLKDIS(); break; #endif } } static int _start(I2C_TypeDef *dev, uint8_t address, uint8_t rw_flag, uint8_t *err) { int cnt = 0; *err = 0; /* generate start condition */ DEBUG("Generate start condition\n"); dev->CR1 |= I2C_CR1_START; DEBUG("Wait for SB flag to be set\n"); while (!(dev->SR1 & I2C_SR1_SB) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)); if (cnt == I2C_MAX_LOOP_CNT || *err) { return -3; } /* send address and read/write flag */ DEBUG("Send address\n"); dev->DR = (address << 1) | rw_flag; /* clear ADDR flag by reading first SR1 and then SR2 */ DEBUG("Wait for ADDR flag to be set\n"); cnt = 0; *err = 0; while (!(dev->SR1 & I2C_SR1_ADDR) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {} if (cnt == I2C_MAX_LOOP_CNT) { return -3; } return 0; } static inline void _clear_addr(I2C_TypeDef *dev) { dev->SR1; dev->SR2; DEBUG("Cleared address\n"); } static inline int _write(I2C_TypeDef *dev, const uint8_t *data, int length, uint8_t *err) { DEBUG("Looping through bytes\n"); for (int i = 0; i < length; i++) { /* write data to data register */ dev->DR = data[i]; DEBUG("Written %i byte to data reg, now waiting for DR to be empty again\n", i); /* wait for transfer to finish */ int cnt = 0; *err = 0; while (!(dev->SR1 & I2C_SR1_TXE) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {} if (cnt == I2C_MAX_LOOP_CNT || *err) { return -3; } DEBUG("DR is now empty again\n"); } return 0; } static inline int _stop(I2C_TypeDef *dev, uint8_t *err) { /* make sure last byte was send */ DEBUG("Wait if last byte hasn't been sent\n"); int cnt = 0; *err = 0; while (!(dev->SR1 & I2C_SR1_BTF) && cnt++ < I2C_MAX_LOOP_CNT && !(*err)) {} if (cnt == I2C_MAX_LOOP_CNT) { return -3; } /* send STOP condition */ dev->CR1 |= I2C_CR1_STOP; return 0; } static inline void i2c_irq_handler(i2c_t i2c_dev, I2C_TypeDef *dev) { unsigned volatile state = dev->SR1; /* record and clear errors */ err_flag[i2c_dev] = (state >> 8); dev->SR1 &= 0x00ff; DEBUG("\n\n### I2C %d ERROR OCCURED ###\n", i2c_dev); DEBUG("status: %08x\n", state); if (state & I2C_SR1_OVR) { DEBUG("OVR\n"); } if (state & I2C_SR1_AF) { DEBUG("AF\n"); } if (state & I2C_SR1_ARLO) { DEBUG("ARLO\n"); } if (state & I2C_SR1_BERR) { DEBUG("BERR\n"); } if (state & I2C_SR1_PECERR) { DEBUG("PECERR\n"); } if (state & I2C_SR1_TIMEOUT) { DEBUG("TIMEOUT\n"); } if (state & I2C_SR1_SMBALERT) { DEBUG("SMBALERT\n"); } } #if I2C_0_EN void I2C_0_ERR_ISR(void) { i2c_irq_handler(I2C_0, I2C_0_DEV); } #endif