/* * Copyright (C) 2016 Fundacion Inria Chile * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_adc * @{ * * @file * @brief Low-level ADC driver implementation * * @author Francisco Molina * @author Hauke Petersen * @author Nick v. IJzendoorn * * @} */ #include "cpu.h" #include "mutex.h" #include "periph/adc.h" /** * @brief ADC clock settings * * NB: with ADC_CLOCK_HIGH, Vdda should be 2.4V min * */ #define ADC_CLOCK_HIGH (0) #define ADC_CLOCK_MEDIUM (ADC_CCR_ADCPRE_0) #define ADC_CLOCK_LOW (ADC_CCR_ADCPRE_1) /** * @brief ADC sample time, cycles */ #define ADC_SAMPLE_TIME_4C (0) #define ADC_SAMPLE_TIME_9C (1) #define ADC_SAMPLE_TIME_16C (2) #define ADC_SAMPLE_TIME_24C (3) #define ADC_SAMPLE_TIME_48C (4) #define ADC_SAMPLE_TIME_96C (5) #define ADC_SAMPLE_TIME_192C (6) #define ADC_SAMPLE_TIME_384C (7) /** * @brief Load the ADC configuration */ static const adc_conf_t adc_config[] = ADC_CONFIG; /** * @brief Allocate locks for all three available ADC device * * All STM32l1 CPU's have single ADC device */ static mutex_t lock = MUTEX_INIT; static inline void prep(void) { mutex_lock(&lock); /* ADC clock is always HSI clock */ if (!(RCC->CR & RCC_CR_HSION)) { RCC->CR |= RCC_CR_HSION; /* Wait for HSI to become ready */ while (!(RCC->CR & RCC_CR_HSION)) {} } RCC->APB2ENR |= RCC_APB2ENR_ADC1EN; } static inline void done(void) { RCC->APB2ENR &= ~(RCC_APB2ENR_ADC1EN); mutex_unlock(&lock); } static void adc_set_sample_time(uint8_t time) { uint8_t i; uint32_t reg32 = 0; for (i = 0; i <= 9; i++) { reg32 |= (time << (i * 3)); } #if defined(CPU_MODEL_STM32L152RE) ADC1->SMPR0 = reg32; #endif ADC1->SMPR1 = reg32; ADC1->SMPR2 = reg32; ADC1->SMPR3 = reg32; } int adc_init(adc_t line) { /* check if the line is valid */ if (line >= ADC_NUMOF) { return -1; } /* lock and power-on the device */ prep(); /* configure the pin */ if ((adc_config[line].pin != GPIO_UNDEF)) gpio_init_analog(adc_config[line].pin); /* set ADC clock prescaler */ ADC->CCR &= ~ADC_CCR_ADCPRE; ADC->CCR |= ADC_CLOCK_MEDIUM; /* Set sample time */ /* Min 4us needed for temperature sensor measurements */ switch (ADC->CCR & ADC_CCR_ADCPRE) { case ADC_CLOCK_LOW: /* 4 MHz ADC clock -> 16 cycles */ adc_set_sample_time(ADC_SAMPLE_TIME_16C); break; case ADC_CLOCK_MEDIUM: /* 8 MHz ADC clock -> 48 cycles */ adc_set_sample_time(ADC_SAMPLE_TIME_48C); break; default: /* 16 MHz ADC clock -> 96 cycles */ adc_set_sample_time(ADC_SAMPLE_TIME_96C); } /* check if this channel is an internal ADC channel, if so * enable the internal temperature and Vref */ if (adc_config[line].chan == 16 || adc_config[line].chan == 17) { ADC->CCR |= ADC_CCR_TSVREFE; } /* enable the ADC module */ ADC1->CR2 = ADC_CR2_ADON; /* turn off during idle phase*/ ADC1->CR1 = ADC_CR1_PDI; /* free the device again */ done(); return 0; } int32_t adc_sample(adc_t line, adc_res_t res) { int sample; /* check if resolution is applicable */ if ( (res != ADC_RES_6BIT) && (res != ADC_RES_8BIT) && (res != ADC_RES_10BIT) && (res != ADC_RES_12BIT)) { return -1; } /* lock and power on the ADC device */ prep(); /* set resolution, conversion channel and single read */ ADC1->CR1 |= res & ADC_CR1_RES; ADC1->SQR1 &= ~ADC_SQR1_L; ADC1->SQR5 = adc_config[line].chan; /* wait for regulat channel to be ready*/ while (!(ADC1->SR & ADC_SR_RCNR)) {} /* start conversion and wait for results */ ADC1->CR2 |= ADC_CR2_SWSTART; while (!(ADC1->SR & ADC_SR_EOC)) {} /* finally read sample and reset the STRT bit in the status register */ sample = (int)ADC1->DR; ADC1 -> SR &= ~ADC_SR_STRT; /* power off and unlock device again */ done(); return sample; }