/* * Copyright (C) 2017 Hamburg University of Applied Sciences, Dimitri Nahm * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_atmega_common * @ingroup drivers_periph_i2c * @{ * * @file * @brief Low-level I2C driver implementation fot atmega common * * @note This implementation only implements the 7-bit addressing mode. * * @author Dimitri Nahm * * @} */ #include #include "cpu.h" #include "mutex.h" #include "assert.h" #include "periph/i2c.h" #include "periph_conf.h" #include "debug.h" #define ENABLE_DEBUG (0) /* guard file in case no I2C device is defined */ #if I2C_NUMOF #define MT_START 0x08 #define MT_START_REPEATED 0x10 #define MT_ADDRESS_ACK 0x18 #define MT_DATA_ACK 0x28 #define MR_ADDRESS_ACK 0x40 /* static function definitions */ static int _start(uint8_t address, uint8_t rw_flag); static int _write(const uint8_t *data, int length); static void _stop(void); static mutex_t lock = MUTEX_INIT; int i2c_init_master(i2c_t dev, i2c_speed_t speed) { /* TWI Bit Rate Register - division factor for the bit rate generator */ uint8_t twibrr; /* TWI Prescaler Bits - default 0 */ uint8_t twipb = 0; /* check if the line is valid */ if (dev >= I2C_NUMOF) { return -1; } /* calculate speed configuration */ switch (speed) { case I2C_SPEED_LOW: if (CLOCK_CORECLOCK > 20000000U || CLOCK_CORECLOCK < 1000000U) { return -2; } twibrr = ((CLOCK_CORECLOCK / 10000) - 16) / (2 * 4); /* CLK Prescaler 4 */ twipb = 1; break; case I2C_SPEED_NORMAL: if (CLOCK_CORECLOCK > 50000000U || CLOCK_CORECLOCK < 2000000U) { return -2; } twibrr = ((CLOCK_CORECLOCK / 100000) - 16) / 2; break; case I2C_SPEED_FAST: if (CLOCK_CORECLOCK < 7500000U) { return -2; } twibrr = ((CLOCK_CORECLOCK / 400000) - 16) / 2; break; case I2C_SPEED_FAST_PLUS: if (CLOCK_CORECLOCK < 18000000U) { return -2; } twibrr = ((CLOCK_CORECLOCK / 1000000) - 16) / 2; break; case I2C_SPEED_HIGH: if (CLOCK_CORECLOCK < 62000000U) { return -2; } twibrr = ((CLOCK_CORECLOCK / 3400000) - 16) / 2; break; default: return -2; } /* set pull-up on SCL and SDA */ I2C_PORT_REG |= (I2C_PIN_MASK); /* enable I2C clock */ i2c_poweron(dev); /* disable device */ TWCR &= ~(1 << TWEN); /* configure I2C clock */ TWBR = twibrr; // Set TWI Bit Rate Register TWSR &= ~(0x03); // Reset TWI Prescaler Bits TWSR |= twipb; // Set TWI Prescaler Bits /* enable device */ TWCR |= (1 << TWEN); return 0; } int i2c_acquire(i2c_t dev) { assert(dev < I2C_NUMOF); mutex_lock(&lock); return 0; } int i2c_release(i2c_t dev) { assert(dev < I2C_NUMOF); mutex_unlock(&lock); return 0; } int i2c_read_byte(i2c_t dev, uint8_t address, void *data) { return i2c_read_bytes(dev, address, data, 1); } int i2c_read_bytes(i2c_t dev, uint8_t address, void *data, int length) { uint8_t *my_data = data; assert((dev < I2C_NUMOF) && (length > 0)); /* send start condition and slave address */ if (_start(address, I2C_FLAG_READ) != 0) { return 0; } for (int i = 0; i < length; i++) { /* Send NACK for last received byte */ if ((length - i) == 1) { TWCR = (1 << TWEN) | (1 << TWINT); } else { TWCR = (1 << TWEA) | (1 << TWEN) | (1 << TWINT); } DEBUG("Wait for byte %i\n", i+1); /* Wait for TWINT Flag set. This indicates that DATA has been received.*/ while (!(TWCR & (1 << TWINT))) {} /* receive data byte */ my_data[i] = TWDR; DEBUG("Byte %i received\n", i+1); } /* end transmission */ _stop(); return length; } int i2c_read_reg(i2c_t dev, uint8_t address, uint8_t reg, void *data) { return i2c_read_regs(dev, address, reg, data, 1); } int i2c_read_regs(i2c_t dev, uint8_t address, uint8_t reg, void *data, int length) { assert((dev < I2C_NUMOF) && (length > 0)); /* start transmission and send slave address */ if (_start(address, I2C_FLAG_WRITE) != 0) { return 0; } /* send register address and wait for complete transfer to be finished*/ if (_write(®, 1) != 1) { _stop(); return 0; } /* now start a new start condition and receive data */ return i2c_read_bytes(dev, address, data, length); } int i2c_write_byte(i2c_t dev, uint8_t address, uint8_t data) { return i2c_write_bytes(dev, address, &data, 1); } int i2c_write_bytes(i2c_t dev, uint8_t address, const void *data, int length) { int bytes = 0; assert((dev < I2C_NUMOF) && (length > 0)); /* start transmission and send slave address */ if (_start(address, I2C_FLAG_WRITE) != 0) { return 0; } /* send out data bytes */ bytes = _write(data, length); /* end transmission */ _stop(); return bytes; } int i2c_write_reg(i2c_t dev, uint8_t address, uint8_t reg, uint8_t data) { return i2c_write_regs(dev, address, reg, &data, 1); } int i2c_write_regs(i2c_t dev, uint8_t address, uint8_t reg, const void *data, int length) { int bytes = 0; assert((dev < I2C_NUMOF) && (length > 0)); /* start transmission and send slave address */ if (_start(address, I2C_FLAG_WRITE) != 0) { return 0; } /* send register address and wait for complete transfer to be finished*/ if (_write(®, 1)) { /* write data to register */ bytes = _write(data, length); } /* finish transfer */ _stop(); /* return number of bytes send */ return bytes; } void i2c_poweron(i2c_t dev) { assert(dev < I2C_NUMOF); I2C_POWER_REG &= ~(1 << PRTWI); } void i2c_poweroff(i2c_t dev) { assert(dev < I2C_NUMOF); I2C_POWER_REG |= (1 << PRTWI); } static int _start(uint8_t address, uint8_t rw_flag) { /* Reset I2C Interrupt Flag and transmit START condition */ TWCR = (1 << TWINT) | (1 << TWSTA) | (1 << TWEN); DEBUG("START condition transmitted\n"); /* Wait for TWINT Flag set. This indicates that the START has been * transmitted, and ACK/NACK has been received.*/ while (!(TWCR & (1 << TWINT))) {} /* Check value of TWI Status Register. Mask prescaler bits. * If status different from START go to ERROR */ if ((TWSR & 0xF8) == MT_START) { DEBUG("I2C Status is: START\n"); } else if ((TWSR & 0xF8) == MT_START_REPEATED) { DEBUG("I2C Status is: START REPEATED\n"); } else { DEBUG("I2C Status Register is different from START/START_REPEATED\n"); _stop(); return -1; } /* Load ADDRESS and R/W Flag into TWDR Register. * Clear TWINT bit in TWCR to start transmission of ADDRESS */ TWDR = (address << 1) | rw_flag; TWCR = (1 << TWINT) | (1 << TWEN); DEBUG("ADDRESS and FLAG transmitted\n"); /* Wait for TWINT Flag set. This indicates that ADDRESS has been transmitted.*/ while (!(TWCR & (1 << TWINT))) {} /* Check value of TWI Status Register. Mask prescaler bits. * If status different from ADDRESS ACK go to ERROR */ if ((TWSR & 0xF8) == MT_ADDRESS_ACK) { DEBUG("ACK has been received for ADDRESS (write)\n"); } else if ((TWSR & 0xF8) == MR_ADDRESS_ACK) { DEBUG("ACK has been received for ADDRESS (read)\n"); } else { DEBUG("NOT ACK has been received for ADDRESS\n"); _stop(); return -2; } return 0; } static int _write(const uint8_t *data, int length) { for (int i = 0; i < length; i++) { /* Load DATA into TWDR Register. * Clear TWINT bit in TWCR to start transmission of data */ TWDR = data[i]; TWCR = (1 << TWINT) | (1 << TWEN); DEBUG("Byte %i transmitted\n", i+1); /* Wait for TWINT Flag set. This indicates that DATA has been transmitted.*/ while (!(TWCR & (1 << TWINT))) {} /* Check value of TWI Status Register. Mask prescaler bits. If status * different from MT_DATA_ACK, return number of transmitted bytes */ if ((TWSR & 0xF8) != MT_DATA_ACK) { DEBUG("NACK has been received for BYTE %i\n", i+1); return i; } else { DEBUG("ACK has been received for BYTE %i\n", i+1); } } return length; } static void _stop(void) { /* Reset I2C Interrupt Flag and transmit STOP condition */ TWCR = (1 << TWINT) | (1 << TWSTO) | (1 << TWEN); /* Wait for STOP Flag reset. This indicates that STOP has been transmitted.*/ while (TWCR & (1 << TWSTO)) {} DEBUG("STOP condition transmitted\n"); TWCR = 0; } #endif /* I2C_NUMOF */