/* * Copyright (C) 2020 Koen Zandberg * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_gd32v * @ingroup drivers_periph_timer * @{ * * @file * @brief Low-level timer driver implementation * * @author Koen Zandberg * * @} */ #include "cpu.h" #include "periph/timer.h" #define ENABLE_DEBUG 0 #include "debug.h" /** * @brief Define a macro for accessing a timer channel */ #define TIM_CHAN(tim, chan) *(&dev(tim)->CH0CV + chan) #define TIMER_CHANNEL_NUMOF (4) static void _timer_isr(unsigned irq); /** * @brief Interrupt context for each configured timer */ static timer_isr_ctx_t isr_ctx[TIMER_NUMOF]; /** * @brief Get the timer device */ static inline TIMER_Type *dev(tim_t tim) { return timer_config[tim].dev; } #ifdef MODULE_PERIPH_TIMER_PERIODIC /** * @brief Helper macro to get channel bit in timer/channel bitmap */ #define CHAN_BIT(tim, chan) (1 << chan) << (TIMER_CHANNEL_NUMOF * (tim & 1)) /** * @brief Bitmap for compare channel disable after match */ static uint8_t _oneshot[(TIMER_NUMOF + 1) / 2]; /** * @brief Clear interrupt enable after the interrupt has fired */ static inline void set_oneshot(tim_t tim, int chan) { _oneshot[tim >> 1] |= CHAN_BIT(tim, chan); } /** * @brief Enable interrupt with every wrap-around of the timer */ static inline void clear_oneshot(tim_t tim, int chan) { _oneshot[tim >> 1] &= ~CHAN_BIT(tim, chan); } static inline bool is_oneshot(tim_t tim, int chan) { return _oneshot[tim >> 1] & CHAN_BIT(tim, chan); } #else /* !MODULE_PERIPH_TIMER_PERIODIC */ static inline void set_oneshot(tim_t tim, int chan) { (void)tim; (void)chan; } static inline bool is_oneshot(tim_t tim, int chan) { (void)tim; (void)chan; return true; } #endif /* MODULE_PERIPH_TIMER_PERIODIC */ int timer_init(tim_t tim, unsigned long freq, timer_cb_t cb, void *arg) { /* check if device is valid */ if (tim >= TIMER_NUMOF) { return -1; } /* remember the interrupt context */ isr_ctx[tim].cb = cb; isr_ctx[tim].arg = arg; /* enable the peripheral clock */ periph_clk_en(timer_config[tim].bus, timer_config[tim].rcu_mask); /* configure the timer as upcounter in continuous mode */ dev(tim)->CTL0 = 0; dev(tim)->CTL1 = 0; dev(tim)->CAR = timer_config[tim].max; /* set prescaler */ dev(tim)->PSC = (((periph_apb_clk(timer_config[tim].bus) * 2) / freq) - 1); DEBUG("[timer]: %" PRIu32 "/%lu = %" PRIu16 "\n", periph_apb_clk(timer_config[tim].bus), freq, dev(tim)->PSC); /* generate an update event to apply our configuration */ dev(tim)->SWEVG = TIMER0_SWEVG_UPG_Msk; /* enable the timer's interrupt */ clic_enable_interrupt(timer_config[tim].irqn, CPU_DEFAULT_IRQ_PRIO); clic_set_handler(timer_config[tim].irqn, _timer_isr); /* reset the counter and start the timer */ timer_start(tim); return 0; } int timer_set_absolute(tim_t tim, int channel, unsigned int value) { DEBUG("[timer]: setting %u to %i\n", value, channel); if (channel >= (int)TIMER_CHANNEL_NUMOF) { return -1; } set_oneshot(tim, channel); TIM_CHAN(tim, channel) = (value & timer_config[tim].max); #ifdef MODULE_PERIPH_TIMER_PERIODIC if (dev(tim)->CAR == TIM_CHAN(tim, channel)) { dev(tim)->CAR = timer_config[tim].max; } #endif dev(tim)->DMAINTEN |= (TIMER0_DMAINTEN_CH0IE_Msk << channel); return 0; } #ifdef MODULE_PERIPH_TIMER_PERIODIC int timer_set_periodic(tim_t tim, int channel, unsigned int value, uint8_t flags) { if (channel >= (int)TIMER_CHANNEL_NUMOF) { return -1; } if (flags & TIM_FLAG_SET_STOPPED) { timer_stop(tim); } clear_oneshot(tim, channel); if (flags & TIM_FLAG_RESET_ON_SET) { /* setting COUNT gives us an interrupt on all channels */ unsigned state = irq_disable(); dev(tim)->CNT = 0; /* wait for the interrupt & clear it */ while (dev(tim)->INTF == 0) {} dev(tim)->INTF = 0; irq_restore(state); } TIM_CHAN(tim, channel) = value; dev(tim)->DMAINTEN |= (TIMER0_DMAINTEN_CH0IE_Msk << channel); if (flags & TIM_FLAG_RESET_ON_MATCH) { dev(tim)->CAR = value; } return 0; } #endif /* MODULE_PERIPH_TIMER_PERIODIC */ int timer_clear(tim_t tim, int channel) { if (channel >= (int)TIMER_CHANNEL_NUMOF) { return -1; } dev(tim)->DMAINTEN &= ~(TIMER0_DMAINTEN_CH0IE_Msk << channel); #ifdef MODULE_PERIPH_TIMER_PERIODIC if (dev(tim)->CAR == TIM_CHAN(tim, channel)) { dev(tim)->CAR = timer_config[tim].max; } #endif return 0; } unsigned int timer_read(tim_t tim) { return (unsigned int)dev(tim)->CNT; } void timer_start(tim_t tim) { dev(tim)->CTL0 |= TIMER0_CTL0_CEN_Msk; } void timer_stop(tim_t tim) { dev(tim)->CTL0 &= ~(TIMER0_CTL0_CEN_Msk); } static void _irq_handler(tim_t tim) { uint32_t top = dev(tim)->CAR; uint32_t status = dev(tim)->INTF & dev(tim)->DMAINTEN; dev(tim)->INTF = 0; for (unsigned int i = 0; status; i++) { uint32_t msk = 1 << (TIMER0_INTF_CH0IF_Pos + i); /* check if interrupt flag is set */ if ((status & msk) == 0) { continue; } status &= ~msk; /* interrupt flag gets set for all channels > ARR */ if (TIM_CHAN(tim, i) > top) { continue; } /* disable Interrupt */ if (is_oneshot(tim, i)) { dev(tim)->DMAINTEN &= ~msk; } isr_ctx[tim].cb(isr_ctx[tim].arg, i); } } static void _timer_isr(unsigned irq) { switch (irq) { #ifdef TIMER_0_IRQN case TIMER_0_IRQN: _irq_handler(TIMER_DEV(0)); break; #endif #ifdef TIMER_1_IRQN case TIMER_1_IRQN: _irq_handler(TIMER_DEV(1)); break; #endif #ifdef TIMER_2_IRQN case TIMER_2_IRQN: _irq_handler(TIMER_DEV(2)); break; #endif #ifdef TIMER_3_IRQN case TIMER_3_IRQN: _irq_handler(TIMER_DEV(3)); break; #endif default: assert(false); } }