/* * Copyright (C) 2016 Oliver Hahm * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /* This code is public-domain - it is based on libcrypt * placed in the public domain by Wei Dai and other contributors. */ /** * @ingroup sys_hashes_sha1 * @{ * * @file * @brief Implementation of the SHA-1 hashing function * * @author Wei Dai and others * @author Oliver Hahm */ #include #include #include "hashes/sha1.h" #define SHA1_K0 0x5a827999 #define SHA1_K20 0x6ed9eba1 #define SHA1_K40 0x8f1bbcdc #define SHA1_K60 0xca62c1d6 void sha1_init(sha1_context *ctx) { ctx->state[0] = 0x67452301; ctx->state[1] = 0xefcdab89; ctx->state[2] = 0x98badcfe; ctx->state[3] = 0x10325476; ctx->state[4] = 0xc3d2e1f0; ctx->byte_count = 0; ctx->buffer_offset = 0; } static uint32_t sha1_rol32(uint32_t number, uint8_t bits) { return ((number << bits) | (number >> (32 - bits))); } static void sha1_hash_block(sha1_context *s) { uint8_t i; uint32_t a, b, c, d, e, t; a = s->state[0]; b = s->state[1]; c = s->state[2]; d = s->state[3]; e = s->state[4]; for (i = 0; i < 80; i++) { if (i >= 16) { t = s->buffer[(i + 13) & 15] ^ s->buffer[(i + 8) & 15] ^ s->buffer[(i + 2) & 15] ^ s->buffer[i & 15]; s->buffer[i & 15] = sha1_rol32(t, 1); } if (i < 20) { t = (d ^ (b & (c ^ d))) + SHA1_K0; } else if (i < 40) { t = (b ^ c ^ d) + SHA1_K20; } else if (i < 60) { t = ((b & c) | (d & (b | c))) + SHA1_K40; } else { t = (b ^ c ^ d) + SHA1_K60; } t += sha1_rol32(a, 5) + e + s->buffer[i & 15]; e = d; d = c; c = sha1_rol32(b, 30); b = a; a = t; } s->state[0] += a; s->state[1] += b; s->state[2] += c; s->state[3] += d; s->state[4] += e; } static void sha1_add_uncounted(sha1_context *s, uint8_t data) { uint8_t *const b = (uint8_t *) s->buffer; #ifdef __BIG_ENDIAN__ b[s->buffer_offset] = data; #else b[s->buffer_offset ^ 3] = data; #endif s->buffer_offset++; if (s->buffer_offset == SHA1_BLOCK_LENGTH) { sha1_hash_block(s); s->buffer_offset = 0; } } static void sha1_update_byte(sha1_context *ctx, uint8_t data) { ++ctx->byte_count; sha1_add_uncounted(ctx, data); } void sha1_update(sha1_context *ctx, const void *data, size_t len) { const uint8_t *d = data; while (len--) { sha1_update_byte(ctx, *(d++)); } } static void sha1_pad(sha1_context *s) { /* Implement SHA-1 padding (fips180-2 ยง5.1.1) */ /* Pad with 0x80 followed by 0x00 until the end of the block */ sha1_add_uncounted(s, 0x80); while (s->buffer_offset != 56) { sha1_add_uncounted(s, 0x00); } /* Append length in the last 8 bytes */ sha1_add_uncounted(s, 0); /* We're only using 32 bit lengths */ sha1_add_uncounted(s, 0); /* But SHA-1 supports 64 bit lengths */ sha1_add_uncounted(s, 0); /* So zero pad the top bits */ sha1_add_uncounted(s, s->byte_count >> 29); /* Shifting to multiply by 8 */ sha1_add_uncounted(s, s->byte_count >> 21); /* as SHA-1 supports bitstreams as well as */ sha1_add_uncounted(s, s->byte_count >> 13); /* byte. */ sha1_add_uncounted(s, s->byte_count >> 5); sha1_add_uncounted(s, s->byte_count << 3); } void sha1_final(sha1_context *ctx, void *digest) { /* Pad to complete the last block */ sha1_pad(ctx); /* Swap byte order back */ for (int i = 0; i < 5; i++) { ctx->state[i] = (((ctx->state[i]) << 24) & 0xff000000) | (((ctx->state[i]) << 8) & 0x00ff0000) | (((ctx->state[i]) >> 8) & 0x0000ff00) | (((ctx->state[i]) >> 24) & 0x000000ff); } /* Copy the content of the hash (20 characters) */ memcpy(digest, ctx->state, 20); } void sha1(void *digest, const void *data, size_t len) { sha1_context ctx; sha1_init(&ctx); sha1_update(&ctx, (unsigned char *) data, len); sha1_final(&ctx, digest); } #define HMAC_IPAD 0x36 #define HMAC_OPAD 0x5c void sha1_init_hmac(sha1_context *ctx, const void *key, size_t key_length) { uint8_t i; const uint8_t *k = key; memset(ctx->key_buffer, 0, SHA1_BLOCK_LENGTH); if (key_length > SHA1_BLOCK_LENGTH) { /* Hash long keys */ sha1_init(ctx); while (key_length--) { sha1_update_byte(ctx, *k++); } sha1_final(ctx, ctx->key_buffer); } else { /* Block length keys are used as is */ memcpy(ctx->key_buffer, key, key_length); } /* Start inner hash */ sha1_init(ctx); for (i = 0; i < SHA1_BLOCK_LENGTH; i++) { sha1_update_byte(ctx, ctx->key_buffer[i] ^ HMAC_IPAD); } } void sha1_final_hmac(sha1_context *ctx, void *digest) { uint8_t i; /* Complete inner hash */ sha1_final(ctx, ctx->inner_hash); /* Calculate outer hash */ sha1_init(ctx); for (i = 0; i < SHA1_BLOCK_LENGTH; i++) { sha1_update_byte(ctx, ctx->key_buffer[i] ^ HMAC_OPAD); } for (i = 0; i < SHA1_DIGEST_LENGTH; i++) { sha1_update_byte(ctx, ctx->inner_hash[i]); } sha1_final(ctx, digest); }