/* * Copyright (C) 2014 Hamburg University of Applied Sciences * 2014-2017 Freie UniversitÀt Berlin * 2016-2017 OTA keys S.A. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_spi * @{ * * @file * @brief Low-level SPI driver implementation * * @author Peter Kietzmann * @author Fabian Nack * @author Hauke Petersen * @author Vincent Dupont * @author Joakim NohlgÄrd * @author Thomas Eichinger * * @} */ #include #include "bitarithm.h" #include "cpu.h" #include "mutex.h" #include "periph/spi.h" #include "pm_layered.h" #define ENABLE_DEBUG 0 #include "debug.h" /** * @brief Number of bits to shift the BR value in the CR1 register */ #define BR_SHIFT (3U) #define BR_MAX (7U) #ifdef SPI_CR2_FRXTH /* configure SPI for 8-bit data width */ #define SPI_CR2_SETTINGS (SPI_CR2_FRXTH |\ SPI_CR2_DS_0 |\ SPI_CR2_DS_1 |\ SPI_CR2_DS_2) #else #define SPI_CR2_SETTINGS 0 #endif /** * @brief Allocate one lock per SPI device */ static mutex_t locks[SPI_NUMOF]; /** * @brief Clock configuration cache */ static uint32_t clocks[SPI_NUMOF]; /** * @brief Clock divider cache */ static uint8_t dividers[SPI_NUMOF]; static inline SPI_TypeDef *dev(spi_t bus) { return spi_config[bus].dev; } #ifdef MODULE_PERIPH_DMA static inline bool _use_dma(const spi_conf_t *conf) { return conf->tx_dma != DMA_STREAM_UNDEF && conf->rx_dma != DMA_STREAM_UNDEF; } #endif /** * @brief Multiplier for clock divider calculations * * Makes the divider calculation fixed point */ #define SPI_APB_CLOCK_SHIFT (4U) #define SPI_APB_CLOCK_MULT (1U << SPI_APB_CLOCK_SHIFT) static uint8_t _get_clkdiv(const spi_conf_t *conf, uint32_t clock) { uint32_t bus_clock = periph_apb_clk(conf->apbbus); /* Shift bus_clock with SPI_APB_CLOCK_SHIFT to create a fixed point int */ uint32_t div = (bus_clock << SPI_APB_CLOCK_SHIFT) / (2 * clock); DEBUG("[spi] clock: divider: %"PRIu32"\n", div); /* Test if the divider is 2 or smaller, keeping the fixed point in mind */ if (div <= SPI_APB_CLOCK_MULT) { return 0; } /* determine MSB and compensate back for the fixed point int shift */ uint8_t rounded_div = bitarithm_msb(div) - SPI_APB_CLOCK_SHIFT; /* Determine if rounded_div is not a power of 2 */ if ((div & (div - 1)) != 0) { /* increment by 1 to ensure that the clock speed at most the * requested clock speed */ rounded_div++; } return rounded_div > BR_MAX ? BR_MAX : rounded_div; } void spi_init(spi_t bus) { assert(bus < SPI_NUMOF); /* initialize device lock */ mutex_init(&locks[bus]); /* trigger pin initialization */ spi_init_pins(bus); periph_clk_en(spi_config[bus].apbbus, spi_config[bus].rccmask); /* reset configuration */ dev(bus)->CR1 = 0; #ifdef SPI_I2SCFGR_I2SE dev(bus)->I2SCFGR = 0; #endif dev(bus)->CR2 = SPI_CR2_SETTINGS; periph_clk_dis(spi_config[bus].apbbus, spi_config[bus].rccmask); } void spi_init_pins(spi_t bus) { #ifdef CPU_FAM_STM32F1 if (gpio_is_valid(spi_config[bus].sclk_pin)) { gpio_init_af(spi_config[bus].sclk_pin, GPIO_AF_OUT_PP); } if (gpio_is_valid(spi_config[bus].mosi_pin)) { gpio_init_af(spi_config[bus].mosi_pin, GPIO_AF_OUT_PP); } if (gpio_is_valid(spi_config[bus].miso_pin)) { gpio_init(spi_config[bus].miso_pin, GPIO_IN); } #else if (gpio_is_valid(spi_config[bus].mosi_pin)) { gpio_init(spi_config[bus].mosi_pin, GPIO_OUT); gpio_init_af(spi_config[bus].mosi_pin, spi_config[bus].mosi_af); } if (gpio_is_valid(spi_config[bus].miso_pin)) { gpio_init(spi_config[bus].miso_pin, GPIO_IN); gpio_init_af(spi_config[bus].miso_pin, spi_config[bus].miso_af); } if (gpio_is_valid(spi_config[bus].sclk_pin)) { gpio_init(spi_config[bus].sclk_pin, GPIO_OUT); gpio_init_af(spi_config[bus].sclk_pin, spi_config[bus].sclk_af); } #endif } int spi_init_cs(spi_t bus, spi_cs_t cs) { if (bus >= SPI_NUMOF) { return SPI_NODEV; } if (cs == SPI_CS_UNDEF || (((cs & SPI_HWCS_MASK) == SPI_HWCS_MASK) && (cs & ~(SPI_HWCS_MASK)))) { return SPI_NOCS; } if (cs == SPI_HWCS_MASK) { if (spi_config[bus].cs_pin == GPIO_UNDEF) { return SPI_NOCS; } #ifdef CPU_FAM_STM32F1 gpio_init_af(spi_config[bus].cs_pin, GPIO_AF_OUT_PP); #else gpio_init(spi_config[bus].cs_pin, GPIO_OUT); gpio_init_af(spi_config[bus].cs_pin, spi_config[bus].cs_af); #endif } else { gpio_init((gpio_t)cs, GPIO_OUT); gpio_set((gpio_t)cs); } return SPI_OK; } #ifdef MODULE_PERIPH_SPI_GPIO_MODE int spi_init_with_gpio_mode(spi_t bus, spi_gpio_mode_t mode) { assert(bus < SPI_NUMOF); int ret = 0; #ifdef CPU_FAM_STM32F1 /* This has no effect on STM32F1 */ return ret; #else if (gpio_is_valid(spi_config[bus].mosi_pin)) { ret += gpio_init(spi_config[bus].mosi_pin, mode.mosi); gpio_init_af(spi_config[bus].mosi_pin, spi_config[bus].mosi_af); } if (gpio_is_valid(spi_config[bus].miso_pin)) { ret += gpio_init(spi_config[bus].miso_pin, mode.miso); gpio_init_af(spi_config[bus].miso_pin, spi_config[bus].miso_af); } if (gpio_is_valid(spi_config[bus].sclk_pin)) { ret += gpio_init(spi_config[bus].sclk_pin, mode.sclk); gpio_init_af(spi_config[bus].sclk_pin, spi_config[bus].sclk_af); } return ret; #endif } #endif void spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk) { assert((unsigned)bus < SPI_NUMOF); /* lock bus */ mutex_lock(&locks[bus]); #ifdef STM32_PM_STOP /* block STOP mode */ pm_block(STM32_PM_STOP); #endif /* enable SPI device clock */ periph_clk_en(spi_config[bus].apbbus, spi_config[bus].rccmask); /* enable device */ if (clk != clocks[bus]) { dividers[bus] = _get_clkdiv(&spi_config[bus], clk); clocks[bus] = clk; } uint8_t br = dividers[bus]; DEBUG("[spi] acquire: requested clock: %"PRIu32", resulting clock: %"PRIu32 " BR divider: %u\n", clk, periph_apb_clk(spi_config[bus].apbbus)/(1 << (br + 1)), br); uint16_t cr1_settings = ((br << BR_SHIFT) | mode | SPI_CR1_MSTR); /* Settings to add to CR2 in addition to SPI_CR2_SETTINGS */ uint16_t cr2_extra_settings = 0; if (cs != SPI_HWCS_MASK) { cr1_settings |= (SPI_CR1_SSM | SPI_CR1_SSI); } else { cr2_extra_settings = (SPI_CR2_SSOE); } #ifdef MODULE_PERIPH_DMA if (_use_dma(&spi_config[bus])) { cr2_extra_settings |= SPI_CR2_TXDMAEN | SPI_CR2_RXDMAEN; dma_acquire(spi_config[bus].tx_dma); dma_setup(spi_config[bus].tx_dma, spi_config[bus].tx_dma_chan, (uint32_t*)&(dev(bus)->DR), DMA_MEM_TO_PERIPH, DMA_DATA_WIDTH_BYTE, 0); dma_acquire(spi_config[bus].rx_dma); dma_setup(spi_config[bus].rx_dma, spi_config[bus].rx_dma_chan, (uint32_t*)&(dev(bus)->DR), DMA_PERIPH_TO_MEM, DMA_DATA_WIDTH_BYTE, 0); } #endif dev(bus)->CR1 = cr1_settings; /* Only modify CR2 if needed */ if (cr2_extra_settings) { dev(bus)->CR2 = (SPI_CR2_SETTINGS | cr2_extra_settings); } } void spi_release(spi_t bus) { #ifdef MODULE_PERIPH_DMA if (_use_dma(&spi_config[bus])) { dma_release(spi_config[bus].tx_dma); dma_release(spi_config[bus].rx_dma); } #endif /* disable device and release lock */ dev(bus)->CR1 = 0; dev(bus)->CR2 = SPI_CR2_SETTINGS; /* Clear the DMA and SSOE flags */ periph_clk_dis(spi_config[bus].apbbus, spi_config[bus].rccmask); #ifdef STM32_PM_STOP /* unblock STOP mode */ pm_unblock(STM32_PM_STOP); #endif mutex_unlock(&locks[bus]); } static inline void _wait_for_end(spi_t bus) { /* make sure the transfer is completed before continuing, see reference * manual(s) -> section 'Disabling the SPI' */ while (!(dev(bus)->SR & SPI_SR_TXE)) {} while (dev(bus)->SR & SPI_SR_BSY) {} } #ifdef MODULE_PERIPH_DMA static void _transfer_dma(spi_t bus, const void *out, void *in, size_t len) { uint8_t tmp = 0; if (out) { dma_prepare(spi_config[bus].tx_dma, (void*)out, len, 1); } else { dma_prepare(spi_config[bus].tx_dma, &tmp, len, 0); } if (in) { dma_prepare(spi_config[bus].rx_dma, in, len, 1); } else { dma_prepare(spi_config[bus].rx_dma, &tmp, len, 0); } /* Start RX first to ensure it is active before the SPI transfers are * triggered by the TX dma activity */ dma_start(spi_config[bus].rx_dma); dma_start(spi_config[bus].tx_dma); dma_wait(spi_config[bus].rx_dma); dma_wait(spi_config[bus].tx_dma); #ifdef DMA_CCR_EN dma_stop(spi_config[bus].rx_dma); dma_stop(spi_config[bus].tx_dma); #endif _wait_for_end(bus); } #endif static void _transfer_no_dma(spi_t bus, const void *out, void *in, size_t len) { const uint8_t *outbuf = out; uint8_t *inbuf = in; /* we need to recast the data register to uint_8 to force 8-bit access */ volatile uint8_t *DR = (volatile uint8_t*)&(dev(bus)->DR); /* transfer data, use shortpath if only sending data */ if (!inbuf) { for (size_t i = 0; i < len; i++) { while (!(dev(bus)->SR & SPI_SR_TXE)); *DR = outbuf[i]; } /* wait until everything is finished and empty the receive buffer */ while (!(dev(bus)->SR & SPI_SR_TXE)) {} while (dev(bus)->SR & SPI_SR_BSY) {} while (dev(bus)->SR & SPI_SR_RXNE) { dev(bus)->DR; /* we might just read 2 bytes at once here */ } } else if (!outbuf) { for (size_t i = 0; i < len; i++) { while (!(dev(bus)->SR & SPI_SR_TXE)); *DR = 0; while (!(dev(bus)->SR & SPI_SR_RXNE)); inbuf[i] = *DR; } } else { for (size_t i = 0; i < len; i++) { while (!(dev(bus)->SR & SPI_SR_TXE)); *DR = outbuf[i]; while (!(dev(bus)->SR & SPI_SR_RXNE)); inbuf[i] = *DR; } } _wait_for_end(bus); } void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont, const void *out, void *in, size_t len) { /* make sure at least one input or one output buffer is given */ assert(out || in); /* active the given chip select line */ dev(bus)->CR1 |= (SPI_CR1_SPE); /* this pulls the HW CS line low */ if ((cs != SPI_HWCS_MASK) && (cs != SPI_CS_UNDEF)) { gpio_clear((gpio_t)cs); } #ifdef MODULE_PERIPH_DMA if (_use_dma(&spi_config[bus])) { _transfer_dma(bus, out, in, len); } else { #endif _transfer_no_dma(bus, out, in, len); #ifdef MODULE_PERIPH_DMA } #endif /* release the chip select if not specified differently */ if ((!cont) && (cs != SPI_CS_UNDEF)) { dev(bus)->CR1 &= ~(SPI_CR1_SPE); /* pull HW CS line high */ if (cs != SPI_HWCS_MASK) { gpio_set((gpio_t)cs); } } }