/* * Copyright (C) 2014-2016 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_adc * @{ * * @file * @brief Low-level ADC driver implementation * * @author Hauke Petersen * * @} */ #include "cpu.h" #include "irq.h" #include "mutex.h" #include "periph/adc.h" #include "periph/vbat.h" #include "periph_conf.h" /** * @brief Maximum allowed ADC clock speed */ #define MAX_ADC_SPEED MHZ(12) /** * @brief Maximum sampling time for each channel (480 cycles) * T_CONV[µs] = (RESOLUTION[bits] + SMP[cycles]) / CLOCK_SPEED[MHz] */ #define MAX_ADC_SMP (7u) /** * @brief Default VBAT undefined value */ #ifndef VBAT_ADC #define VBAT_ADC ADC_UNDEF #endif /** * @brief Allocate locks for all three available ADC devices */ static mutex_t locks[] = { #if ADC_DEVS > 1 MUTEX_INIT, #endif #if ADC_DEVS > 2 MUTEX_INIT, #endif MUTEX_INIT }; static inline ADC_TypeDef *dev(adc_t line) { return (ADC_TypeDef *)(ADC1_BASE + (adc_config[line].dev << 8)); } static inline void prep(adc_t line) { mutex_lock(&locks[adc_config[line].dev]); periph_clk_en(APB2, (RCC_APB2ENR_ADC1EN << adc_config[line].dev)); } static inline void done(adc_t line) { periph_clk_dis(APB2, (RCC_APB2ENR_ADC1EN << adc_config[line].dev)); mutex_unlock(&locks[adc_config[line].dev]); } int adc_init(adc_t line) { uint32_t clk_div = 2; /* check if the line is valid */ if (line >= ADC_NUMOF) { return -1; } /* lock and power-on the device */ prep(line); /* configure the pin */ if (adc_config[line].pin != GPIO_UNDEF) { gpio_init_analog(adc_config[line].pin); } /* set sequence length to 1 conversion and enable the ADC device */ dev(line)->SQR1 = 0; dev(line)->CR2 = ADC_CR2_ADON; /* set clock prescaler to get the maximal possible ADC clock value */ for (clk_div = 2; clk_div < 8; clk_div += 2) { if ((periph_apb_clk(APB2) / clk_div) <= MAX_ADC_SPEED) { break; } } ADC->CCR = ((clk_div / 2) - 1) << 16; /* set sampling time to the maximum */ unsigned irq_state = irq_disable(); if (adc_config[line].chan >= 10) { uint32_t smpr1 = dev(line)->SMPR1; smpr1 &= ~(MAX_ADC_SMP << (3 * (adc_config[line].chan - 10))); smpr1 |= MAX_ADC_SMP << (3 * (adc_config[line].chan - 10)); dev(line)->SMPR1 = smpr1; } else { uint32_t smpr2 = dev(line)->SMPR2; smpr2 &= ~(MAX_ADC_SMP << (3 * adc_config[line].chan)); smpr2 |= MAX_ADC_SMP << (3 * adc_config[line].chan); dev(line)->SMPR2 = smpr2; } irq_restore(irq_state); /* free the device again */ done(line); return 0; } int32_t adc_sample(adc_t line, adc_res_t res) { int sample; /* check if resolution is applicable */ if (res & 0xff) { return -1; } /* lock and power on the ADC device */ prep(line); /* check if this channel is an internal ADC channel */ if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) { vbat_enable(); } /* set resolution and conversion channel */ dev(line)->CR1 = res; dev(line)->SQR3 = adc_config[line].chan; /* start conversion and wait for results */ dev(line)->CR2 |= ADC_CR2_SWSTART; while (!(dev(line)->SR & ADC_SR_EOC)) {} /* finally read sample and reset the STRT bit in the status register */ sample = (int)dev(line)->DR; /* check if this channel was an internal ADC channel */ if (IS_USED(MODULE_PERIPH_VBAT) && line == VBAT_ADC) { vbat_disable(); } /* power off and unlock device again */ done(line); return sample; }