/* * Copyright 2017 Ken Rabold * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_fe310 * @{ * * @file timer.c * @brief Low-level timer implementation * * @author Ken Rabold * @} */ #include #include #include #include #include "irq.h" #include "cpu.h" #include "periph/uart.h" #include "vendor/encoding.h" #include "vendor/platform.h" #include "vendor/plic_driver.h" #include "vendor/prci_driver.h" /** * @brief Allocate memory to store the callback functions */ static uart_isr_ctx_t isr_ctx[UART_NUMOF]; static inline void _uart_isr(uart_t dev) { uint32_t data = _REG32(uart_config[dev].addr, UART_REG_RXFIFO); /* Intr cleared automatically when data is read */ while ((data & UART_RXFIFO_EMPTY) != (uint32_t)UART_RXFIFO_EMPTY) { if (isr_ctx[dev].rx_cb) { isr_ctx[dev].rx_cb(isr_ctx[dev].arg, (uint8_t)(data & 0xff)); } data = _REG32(uart_config[dev].addr, UART_REG_RXFIFO); } } void uart_isr(int num) { switch (num) { case INT_UART0_BASE: _uart_isr(0); break; case INT_UART1_BASE: _uart_isr(1); break; default: break; } } static void _drain(uart_t dev) { uint32_t data = _REG32(uart_config[dev].addr, UART_REG_RXFIFO); /* Intr cleared automatically when data is read */ while ((data & UART_RXFIFO_EMPTY) != (uint32_t)UART_RXFIFO_EMPTY) { data = _REG32(uart_config[dev].addr, UART_REG_RXFIFO); } } int uart_init(uart_t dev, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) { uint32_t uartDiv; /* Check for valid UART dev */ assert(dev < UART_NUMOF); /* Save interrupt callback context */ isr_ctx[dev].rx_cb = rx_cb; isr_ctx[dev].arg = arg; /* Power on the device */ uart_poweron(dev); /* Calculate baudrate divisor given current CPU clk rate */ uartDiv = cpu_freq() / baudrate; /* Enable UART 8-N-1 at given baudrate */ _REG32(uart_config[dev].addr, UART_REG_DIV) = uartDiv; /* Select IOF0 */ GPIO_REG(GPIO_IOF_SEL) &= ~(1 << uart_config[dev].tx); /* Enable IOF */ GPIO_REG(GPIO_IOF_EN) |= (1 << uart_config[dev].tx); /* Enable TX */ _REG32(uart_config[dev].addr, UART_REG_TXCTRL) = UART_TXEN; /* Enable RX intr if there is a callback */ if (rx_cb) { /* Select IOF0 */ GPIO_REG(GPIO_IOF_SEL) &= ~(1 << uart_config[dev].rx); /* Enable IOF */ GPIO_REG(GPIO_IOF_EN) |= (1 << uart_config[dev].rx); /* Disable ext interrupts when setting up */ clear_csr(mie, MIP_MEIP); /* Configure UART ISR with PLIC */ set_external_isr_cb(uart_config[dev].isr_num, uart_isr); PLIC_enable_interrupt(uart_config[dev].isr_num); PLIC_set_priority(uart_config[dev].isr_num, UART_ISR_PRIO); /* avoid trap by emptying RX FIFO */ _drain(dev); /* enable RX interrupt */ _REG32(uart_config[dev].addr, UART_REG_IE) = UART_IP_RXWM; /* Enable RX */ _REG32(uart_config[dev].addr, UART_REG_RXCTRL) = UART_RXEN; /* Re-enable ext interrupts */ set_csr(mie, MIP_MEIP); } return UART_OK; } void uart_write(uart_t dev, const uint8_t *data, size_t len) { for (size_t i = 0; i < len; i++) { /* Wait for FIFO to empty */ while ((_REG32(uart_config[dev].addr, UART_REG_TXFIFO) & UART_TXFIFO_FULL) == (uint32_t)UART_TXFIFO_FULL) {}; /* Write a byte */ _REG32(uart_config[dev].addr, UART_REG_TXFIFO) = data[i]; } } void uart_poweron(uart_t dev) { (void) dev; } void uart_poweroff(uart_t dev) { (void) dev; }