/* * Copyright (C) 2016 Freie Universität Berlin * 2018 Inria * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_flashpage * @{ * * @file * @brief Low-level flash page driver implementation * * @author Hauke Petersen * @author Francisco Acosta * @author Alexandre Abadie * * @} */ #include "cpu.h" #include "stmclk.h" #include "assert.h" #include "periph/flashpage.h" #define ENABLE_DEBUG 0 #include "debug.h" #if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1) /* Program memory unlock keys */ #define FLASH_PRGKEY1 ((uint32_t)0x8C9DAEBF) #define FLASH_PRGKEY2 ((uint32_t)0x13141516) #define CNTRL_REG (FLASH->PECR) #define CNTRL_REG_LOCK (FLASH_PECR_PELOCK) #define FLASH_CR_PER (FLASH_PECR_ERASE | FLASH_PECR_PROG) #define FLASHPAGE_DIV (4U) /* write 4 bytes in one go */ #else #if defined(CPU_FAM_STM32L4) || defined(CPU_FAM_STM32WB) || \ defined(CPU_FAM_STM32G4) || defined(CPU_FAM_STM32G0) #define FLASHPAGE_DIV (8U) #else #define FLASHPAGE_DIV (2U) #endif #define CNTRL_REG (FLASH->CR) #define CNTRL_REG_LOCK (FLASH_CR_LOCK) #endif extern void _lock(void); extern void _unlock(void); extern void _wait_for_pending_operations(void); #if defined(CPU_FAM_STM32G4) #define MAX_PAGES_PER_BANK (128) #else /* CPU_FAM_STM32L4 */ #define MAX_PAGES_PER_BANK (256) #endif static void _unlock_flash(void) { _unlock(); #if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1) DEBUG("[flashpage] unlocking the flash program memory\n"); if (!(CNTRL_REG & CNTRL_REG_LOCK)) { if (CNTRL_REG & FLASH_PECR_PRGLOCK) { DEBUG("[flashpage] setting the program memory unlock keys\n"); FLASH->PRGKEYR = FLASH_PRGKEY1; FLASH->PRGKEYR = FLASH_PRGKEY2; } } #endif } static void _erase_page(void *page_addr) { #if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1) || \ defined(CPU_FAM_STM32L4) || defined(CPU_FAM_STM32WB) || \ defined(CPU_FAM_STM32G4) || defined(CPU_FAM_STM32G0) uint32_t *dst = page_addr; #else uint16_t *dst = page_addr; #endif #if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \ defined(CPU_FAM_STM32F3) uint32_t hsi_state = (RCC->CR & RCC_CR_HSION); /* the internal RC oscillator (HSI) must be enabled */ stmclk_enable_hsi(); #endif /* unlock the flash module */ _unlock_flash(); /* make sure no flash operation is ongoing */ _wait_for_pending_operations(); /* set page erase bit and program page address */ DEBUG("[flashpage] erase: setting the erase bit\n"); CNTRL_REG |= FLASH_CR_PER; DEBUG("address to erase: %p\n", page_addr); #if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1) DEBUG("[flashpage] erase: trigger the page erase\n"); *dst = (uint32_t)0; #elif defined(CPU_FAM_STM32L4) || defined(CPU_FAM_STM32WB) || \ defined(CPU_FAM_STM32G4) || defined(CPU_FAM_STM32G0) DEBUG("[flashpage] erase: setting the page address\n"); uint8_t pn; #if (FLASHPAGE_NUMOF <= MAX_PAGES_PER_BANK) || defined(CPU_FAM_STM32WB) pn = (uint8_t)flashpage_page(dst); #else uint16_t page = flashpage_page(dst); if (page > MAX_PAGES_PER_BANK - 1) { CNTRL_REG |= FLASH_CR_BKER; } else { CNTRL_REG &= ~FLASH_CR_BKER; } pn = (uint8_t)page; #endif CNTRL_REG &= ~FLASH_CR_PNB; CNTRL_REG |= (uint32_t)(pn << FLASH_CR_PNB_Pos); CNTRL_REG |= FLASH_CR_STRT; #else /* CPU_FAM_STM32F0 || CPU_FAM_STM32F1 || CPU_FAM_STM32F3 */ DEBUG("[flashpage] erase: setting the page address\n"); FLASH->AR = (uint32_t)dst; /* trigger the page erase and wait for it to be finished */ DEBUG("[flashpage] erase: trigger the page erase\n"); CNTRL_REG |= FLASH_CR_STRT; #endif /* wait as long as device is busy */ _wait_for_pending_operations(); /* reset PER bit */ DEBUG("[flashpage] erase: resetting the page erase bit\n"); CNTRL_REG &= ~(FLASH_CR_PER); /* lock the flash module again */ _lock(); #if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \ defined(CPU_FAM_STM32F3) /* restore the HSI state */ if (!hsi_state) { stmclk_disable_hsi(); } #endif } void flashpage_write_raw(void *target_addr, const void *data, size_t len) { /* assert multiples of FLASHPAGE_RAW_BLOCKSIZE are written and no less of that length. */ assert(!(len % FLASHPAGE_RAW_BLOCKSIZE)); /* ensure writes are aligned */ assert(!(((unsigned)target_addr % FLASHPAGE_RAW_ALIGNMENT) || ((unsigned)data % FLASHPAGE_RAW_ALIGNMENT))); /* ensure the length doesn't exceed the actual flash size */ assert(((unsigned)target_addr + len) < (CPU_FLASH_BASE + (FLASHPAGE_SIZE * FLASHPAGE_NUMOF)) + 1); #if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1) uint32_t *dst = target_addr; const uint32_t *data_addr = data; #elif defined(CPU_FAM_STM32L4) || defined(CPU_FAM_STM32WB) || \ defined(CPU_FAM_STM32G4) || defined(CPU_FAM_STM32G0) uint64_t *dst = target_addr; const uint64_t *data_addr = data; #else uint16_t *dst = (uint16_t *)target_addr; const uint16_t *data_addr = data; #endif #if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \ defined(CPU_FAM_STM32F3) uint32_t hsi_state = (RCC->CR & RCC_CR_HSION); /* the internal RC oscillator (HSI) must be enabled */ stmclk_enable_hsi(); #endif /* unlock the flash module */ _unlock_flash(); /* make sure no flash operation is ongoing */ _wait_for_pending_operations(); DEBUG("[flashpage_raw] write: now writing the data\n"); #if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \ defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) || \ defined(CPU_FAM_STM32WB) || defined(CPU_FAM_STM32G4) || \ defined(CPU_FAM_STM32G0) /* set PG bit and program page to flash */ CNTRL_REG |= FLASH_CR_PG; #endif for (size_t i = 0; i < (len / FLASHPAGE_DIV); i++) { DEBUG("[flashpage_raw] writing %c to %p\n", (char)data_addr[i], dst); *dst++ = data_addr[i]; /* wait as long as device is busy */ _wait_for_pending_operations(); } /* clear program bit again */ #if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \ defined(CPU_FAM_STM32F3) || defined(CPU_FAM_STM32L4) || \ defined(CPU_FAM_STM32WB) || defined(CPU_FAM_STM32G4) || \ defined(CPU_FAM_STM32G0) CNTRL_REG &= ~(FLASH_CR_PG); #endif DEBUG("[flashpage_raw] write: done writing data\n"); /* lock the flash module again */ _lock(); #if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F1) || \ defined(CPU_FAM_STM32F3) /* restore the HSI state */ if (!hsi_state) { stmclk_disable_hsi(); } #endif } void flashpage_write(int page, const void *data) { assert(page < (int)FLASHPAGE_NUMOF); /* ensure there is no attempt to write to CPU2 protected area */ #if defined(CPU_FAM_STM32WB) assert(page < (int)(FLASH->SFR & FLASH_SFR_SFSA)); #endif #if defined(CPU_FAM_STM32L0) || defined(CPU_FAM_STM32L1) /* STM32L0/L1 only supports word sizes */ uint32_t *page_addr = flashpage_addr(page); #elif defined(CPU_FAM_STM32L4) || defined(CPU_FAM_STM32G4) || \ defined(CPU_FAM_STM32G0) uint64_t *page_addr = flashpage_addr(page); #else /* Default is to support half-word sizes */ uint16_t *page_addr = flashpage_addr(page); #endif /* ERASE sequence */ _erase_page(page_addr); /* WRITE sequence */ if (data != NULL) { flashpage_write_raw(page_addr, data, FLASHPAGE_SIZE); } }