/* * Copyright (C) 2016, 2016 Shuguo Zhuo * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @{ * * @file */ #include #include "embUnit.h" #include "net/gnrc/pktbuf.h" #include "net/gnrc/netif/hdr.h" #include "net/gnrc/mac/internal.h" #include "unittests-constants.h" #include "tests-gnrc_mac_internal.h" static void set_up(void) { gnrc_pktbuf_init(); } #if GNRC_MAC_TX_QUEUE_SIZE != 0 /** * @brief This function test the `gnrc_mac_queue_tx_packet()`, to see whether it can * correctly queue the packet to the corresponded priority packet queue. * * In case when the `gnrc_mac_tx_neighbor_t` structure is in used (indicated by * by `CONFIG_GNRC_MAC_NEIGHBOR_COUNT != 0`), `test_gnrc_mac_queue_tx_packet()` successively * queues 4 packets, which are pkt1, pkt2, pkt3 and pkt_bcast, into a defined `tx` * (type of `gnrc_mac_tx_t`). Pkt1, pkt2 have the same destination address of "0x76b6", * , pkt3 is heading for "0x447e", while pkt_bcast is for broadcasting. * Expected results: pkt1 and pkt2 should be queued to `tx::neighbors[1]::queue`, * pkt3 should be queued to `tx::neighbors[2]::queue`, while pkt_bcast should be * queued to `tx::neighbors[0]::queue`. * * In case when the `gnrc_mac_tx_neighbor_t` structure is not in used (indicated by * by `CONFIG_GNRC_MAC_NEIGHBOR_COUNT == 0`), `test_gnrc_mac_queue_tx_packet()` successively * queues 4 packets, which are pkt1, pkt2, pkt3 and pkt_bcast, into a defined `tx` * (type of `gnrc_mac_tx_t`). Pkt1, pkt2 have the same destination address of "0x76b6", * , pkt3 is heading for "0x447e", while pkt_bcast is for broadcasting. * Expected results: all packets should be queued to `tx::queue`, and ranking in * `tx::queue` according to their priorities. * */ static void test_gnrc_mac_queue_tx_packet(void) { gnrc_mac_tx_t tx = GNRC_MAC_TX_INIT; gnrc_pktsnip_t *hdr; gnrc_netif_hdr_t* netif_hdr; uint8_t dst_addr[2]; dst_addr[0] = 0x76; dst_addr[1] = 0xb6; hdr = gnrc_netif_hdr_build(NULL, 0, NULL, 0); gnrc_pktsnip_t *pkt_bcast = gnrc_pktbuf_add(NULL, TEST_STRING12, sizeof(TEST_STRING12), GNRC_NETTYPE_UNDEF); hdr = gnrc_pkt_append(hdr, pkt_bcast); pkt_bcast = hdr; netif_hdr = hdr->data; netif_hdr->flags |= GNRC_NETIF_HDR_FLAGS_BROADCAST; hdr = gnrc_netif_hdr_build(NULL, 0, dst_addr, 2); gnrc_pktsnip_t *pkt1 = gnrc_pktbuf_add(NULL, TEST_STRING4, sizeof(TEST_STRING4), GNRC_NETTYPE_UNDEF); hdr = gnrc_pkt_append(hdr, pkt1); pkt1 = hdr; hdr = gnrc_netif_hdr_build(NULL, 0, dst_addr, 2); gnrc_pktsnip_t *pkt2 = gnrc_pktbuf_add(NULL, TEST_STRING8, sizeof(TEST_STRING8), GNRC_NETTYPE_UNDEF); hdr = gnrc_pkt_append(hdr, pkt2); pkt2 = hdr; dst_addr[0] = 0x44; dst_addr[1] = 0x7e; hdr = gnrc_netif_hdr_build(NULL, 0, dst_addr, 2); gnrc_pktsnip_t *pkt3 = gnrc_pktbuf_add(NULL, TEST_STRING16, sizeof(TEST_STRING16), GNRC_NETTYPE_UNDEF); hdr = gnrc_pkt_append(hdr, pkt3); pkt3 = hdr; #if CONFIG_GNRC_MAC_NEIGHBOR_COUNT != 0 gnrc_pktsnip_t *pkt_head; TEST_ASSERT(gnrc_mac_queue_tx_packet(&tx, 1, pkt1)); pkt_head = gnrc_priority_pktqueue_head(&tx.neighbors[1].queue); TEST_ASSERT(pkt_head == pkt1); TEST_ASSERT(1 == gnrc_priority_pktqueue_length(&tx.neighbors[1].queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING4, pkt_head->next->data); TEST_ASSERT(gnrc_mac_queue_tx_packet(&tx, 0, pkt2)); pkt_head = gnrc_priority_pktqueue_head(&tx.neighbors[1].queue); TEST_ASSERT(pkt_head == pkt2); TEST_ASSERT(2 == gnrc_priority_pktqueue_length(&tx.neighbors[1].queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING8, pkt_head->next->data); pkt_head = gnrc_priority_pktqueue_pop(&tx.neighbors[1].queue); TEST_ASSERT(pkt_head == pkt2); TEST_ASSERT(1 == gnrc_priority_pktqueue_length(&tx.neighbors[1].queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING8, pkt_head->next->data); pkt_head = gnrc_priority_pktqueue_head(&tx.neighbors[1].queue); TEST_ASSERT(pkt_head == pkt1); TEST_ASSERT_EQUAL_STRING(TEST_STRING4, pkt_head->next->data); TEST_ASSERT(gnrc_mac_queue_tx_packet(&tx, 0, pkt3)); pkt_head = gnrc_priority_pktqueue_head(&tx.neighbors[2].queue); TEST_ASSERT(pkt_head == pkt3); TEST_ASSERT(1 == gnrc_priority_pktqueue_length(&tx.neighbors[2].queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING16, pkt_head->next->data); TEST_ASSERT(gnrc_mac_queue_tx_packet(&tx, 0, pkt_bcast)); pkt_head = gnrc_priority_pktqueue_head(&tx.neighbors[0].queue); TEST_ASSERT(pkt_head == pkt_bcast); TEST_ASSERT(1 == gnrc_priority_pktqueue_length(&tx.neighbors[0].queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING12, pkt_head->next->data); #else TEST_ASSERT(gnrc_mac_queue_tx_packet(&tx, 1, pkt1)); TEST_ASSERT(1 == gnrc_priority_pktqueue_length(&tx.queue)); gnrc_pktsnip_t *pkt_head; pkt_head = gnrc_priority_pktqueue_head(&tx.queue); TEST_ASSERT(pkt_head == pkt1); TEST_ASSERT_EQUAL_STRING(TEST_STRING4, pkt_head->next->data); TEST_ASSERT(gnrc_mac_queue_tx_packet(&tx, 1, pkt2)); TEST_ASSERT(2 == gnrc_priority_pktqueue_length(&tx.queue)); pkt_head = gnrc_priority_pktqueue_head(&tx.queue); TEST_ASSERT(pkt_head == pkt1); TEST_ASSERT_EQUAL_STRING(TEST_STRING4, pkt_head->next->data); TEST_ASSERT(gnrc_mac_queue_tx_packet(&tx, 0, pkt3)); TEST_ASSERT(3 == gnrc_priority_pktqueue_length(&tx.queue)); pkt_head = gnrc_priority_pktqueue_head(&tx.queue); TEST_ASSERT(pkt_head == pkt3); TEST_ASSERT_EQUAL_STRING(TEST_STRING16, pkt_head->next->data); TEST_ASSERT(gnrc_mac_queue_tx_packet(&tx, 0, pkt_bcast)); TEST_ASSERT(4 == gnrc_priority_pktqueue_length(&tx.queue)); pkt_head = gnrc_priority_pktqueue_head(&tx.queue); TEST_ASSERT(pkt_head == pkt3); pkt_head = gnrc_priority_pktqueue_pop(&tx.queue); TEST_ASSERT(pkt_head == pkt3); TEST_ASSERT(3 == gnrc_priority_pktqueue_length(&tx.queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING16, pkt_head->next->data); pkt_head = gnrc_priority_pktqueue_pop(&tx.queue); TEST_ASSERT(pkt_head == pkt_bcast); TEST_ASSERT(2 == gnrc_priority_pktqueue_length(&tx.queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING12, pkt_head->next->data); pkt_head = gnrc_priority_pktqueue_pop(&tx.queue); TEST_ASSERT(pkt_head == pkt1); TEST_ASSERT(1 == gnrc_priority_pktqueue_length(&tx.queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING4, pkt_head->next->data); pkt_head = gnrc_priority_pktqueue_pop(&tx.queue); TEST_ASSERT(pkt_head == pkt2); TEST_ASSERT(0 == gnrc_priority_pktqueue_length(&tx.queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING8, pkt_head->next->data); #endif /* CONFIG_GNRC_MAC_NEIGHBOR_COUNT != 0 */ } #endif /* GNRC_MAC_TX_QUEUE_SIZE != 0 */ #if GNRC_MAC_RX_QUEUE_SIZE != 0 /** * @brief This function test the `gnrc_mac_queue_rx_packet()`, to see whether it can * correctly queue the packets to `rx::queue` according to their priorities. * * `test_gnrc_mac_queue_tx_packet()` successively queues 3 packets, which are * pkt1, pkt2, pkt3, into a defined `rx` (type of `gnrc_mac_rx_t`). * Pkt1, pkt2 have the same priority of "1", while pkt3 has the priority of "0". * Expected results: after all the packets are queued, in `rx::queue`, them should * be ranked as (from high priority to low): pkt3, pkt1 and pkt2. * */ static void test_gnrc_mac_queue_rx_packet(void) { gnrc_mac_rx_t rx = GNRC_MAC_RX_INIT; gnrc_pktsnip_t *pkt1 = gnrc_pktbuf_add(NULL, TEST_STRING4, sizeof(TEST_STRING4), GNRC_NETTYPE_UNDEF); gnrc_pktsnip_t *pkt2 = gnrc_pktbuf_add(NULL, TEST_STRING8, sizeof(TEST_STRING8), GNRC_NETTYPE_UNDEF); gnrc_pktsnip_t *pkt3 = gnrc_pktbuf_add(NULL, TEST_STRING16, sizeof(TEST_STRING16), GNRC_NETTYPE_UNDEF); TEST_ASSERT(gnrc_mac_queue_rx_packet(&rx, 1, pkt1)); TEST_ASSERT(1 == gnrc_priority_pktqueue_length(&rx.queue)); gnrc_pktsnip_t *pkt_head; pkt_head = gnrc_priority_pktqueue_head(&rx.queue); TEST_ASSERT(pkt_head == pkt1); TEST_ASSERT_EQUAL_STRING(TEST_STRING4, pkt_head->data); TEST_ASSERT(gnrc_mac_queue_rx_packet(&rx, 1, pkt2)); TEST_ASSERT(2 == gnrc_priority_pktqueue_length(&rx.queue)); pkt_head = gnrc_priority_pktqueue_head(&rx.queue); TEST_ASSERT(pkt_head == pkt1); TEST_ASSERT_EQUAL_STRING(TEST_STRING4, pkt_head->data); TEST_ASSERT(gnrc_mac_queue_rx_packet(&rx, 0, pkt3)); TEST_ASSERT(3 == gnrc_priority_pktqueue_length(&rx.queue)); pkt_head = gnrc_priority_pktqueue_head(&rx.queue); TEST_ASSERT(pkt_head == pkt3); TEST_ASSERT_EQUAL_STRING(TEST_STRING16, pkt_head->data); pkt_head = gnrc_priority_pktqueue_pop(&rx.queue); TEST_ASSERT(pkt_head == pkt3); TEST_ASSERT(2 == gnrc_priority_pktqueue_length(&rx.queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING16, pkt_head->data); pkt_head = gnrc_priority_pktqueue_pop(&rx.queue); TEST_ASSERT(pkt_head == pkt1); TEST_ASSERT(1 == gnrc_priority_pktqueue_length(&rx.queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING4, pkt_head->data); pkt_head = gnrc_priority_pktqueue_pop(&rx.queue); TEST_ASSERT(pkt_head == pkt2); TEST_ASSERT(0 == gnrc_priority_pktqueue_length(&rx.queue)); TEST_ASSERT_EQUAL_STRING(TEST_STRING8, pkt_head->data); } #endif /* GNRC_MAC_RX_QUEUE_SIZE != 0 */ #if GNRC_MAC_DISPATCH_BUFFER_SIZE != 0 static void test_gnrc_mac_dispatch(void) { gnrc_mac_rx_t rx = GNRC_MAC_RX_INIT; for (size_t i = 0; i < GNRC_MAC_DISPATCH_BUFFER_SIZE; i++) { rx.dispatch_buffer[i] = gnrc_pktbuf_add(NULL, TEST_STRING4, sizeof(TEST_STRING4), GNRC_NETTYPE_UNDEF); } gnrc_mac_dispatch(&rx); for (size_t i = 0; i < GNRC_MAC_DISPATCH_BUFFER_SIZE; i++) { TEST_ASSERT_NULL(rx.dispatch_buffer[i]); } } #endif /* GNRC_MAC_DISPATCH_BUFFER_SIZE != 0 */ Test *tests_gnrc_mac_internal_tests(void) { EMB_UNIT_TESTFIXTURES(fixtures) { #if GNRC_MAC_TX_QUEUE_SIZE != 0 new_TestFixture(test_gnrc_mac_queue_tx_packet), #endif /* GNRC_MAC_TX_QUEUE_SIZE != 0 */ #if GNRC_MAC_RX_QUEUE_SIZE != 0 new_TestFixture(test_gnrc_mac_queue_rx_packet), #endif /* GNRC_MAC_RX_QUEUE_SIZE != 0 */ #if GNRC_MAC_DISPATCH_BUFFER_SIZE != 0 new_TestFixture(test_gnrc_mac_dispatch), #endif /* GNRC_MAC_DISPATCH_BUFFER_SIZE != 0 */ }; EMB_UNIT_TESTCALLER(gnrc_mac_internal_tests, set_up, NULL, fixtures); return (Test *)&gnrc_mac_internal_tests; } void tests_gnrc_mac_internal(void) { TESTS_RUN(tests_gnrc_mac_internal_tests()); } /** @} */