/* * Copyright (C) 2014 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup driver_periph * @{ * * @file * @brief Low-level timer driver implementation * * @author Thomas Eichinger * * @} */ #include #include #include "board.h" #include "cpu.h" #include "periph/timer.h" #include "periph_conf.h" #define ENABLE_DEBUG (0) #include "debug.h" /** * @brief Timer state memory */ static timer_isr_ctx_t config[TIMER_NUMOF]; /* enable timer interrupts */ static inline void _irq_enable(tim_t dev); /** * @brief Setup the given timer */ int timer_init(tim_t dev, unsigned long freq, timer_cb_t cb, void *arg) { /* at the moment, the timer can only run at 1MHz */ if (freq != 1000000ul) { return -1; } /* select the clock generator depending on the main clock source: * GCLK0 (1MHz) if we use the internal 8MHz oscillator * GCLK1 (8MHz) if we use the PLL */ #if CLOCK_USE_PLL /* configure GCLK1 (configured to 1MHz) to feed TC3, TC4 and TC5 */; GCLK->CLKCTRL.reg = (uint16_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK1 | (TC3_GCLK_ID << GCLK_CLKCTRL_ID_Pos))); while (GCLK->STATUS.bit.SYNCBUSY) {} /* TC4 and TC5 share the same channel */ GCLK->CLKCTRL.reg = (uint16_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK1 | (TC4_GCLK_ID << GCLK_CLKCTRL_ID_Pos))); #else /* configure GCLK0 to feed TC3, TC4 and TC5 */; GCLK->CLKCTRL.reg = (uint16_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | (TC3_GCLK_ID << GCLK_CLKCTRL_ID_Pos))); /* TC4 and TC5 share the same channel */ GCLK->CLKCTRL.reg = (uint16_t)((GCLK_CLKCTRL_CLKEN | GCLK_CLKCTRL_GEN_GCLK0 | (TC4_GCLK_ID << GCLK_CLKCTRL_ID_Pos))); #endif while (GCLK->STATUS.bit.SYNCBUSY) {} switch (dev) { #if TIMER_0_EN case TIMER_0: if (TIMER_0_DEV.CTRLA.bit.ENABLE) { return 0; } PM->APBCMASK.reg |= PM_APBCMASK_TC3; /* reset timer */ TIMER_0_DEV.CTRLA.bit.SWRST = 1; while (TIMER_0_DEV.CTRLA.bit.SWRST) {} /* choosing 16 bit mode */ TIMER_0_DEV.CTRLA.bit.MODE = TC_CTRLA_MODE_COUNT16_Val; #if CLOCK_USE_PLL /* sourced by 1MHz with prescaler 1 results in... you know it :-) */ TIMER_0_DEV.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV1_Val; #else /* sourced by 8MHz with Presc 8 results in 1MHz clk */ TIMER_0_DEV.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV8_Val; #endif /* choose normal frequency operation */ TIMER_0_DEV.CTRLA.bit.WAVEGEN = TC_CTRLA_WAVEGEN_NFRQ_Val; break; #endif #if TIMER_1_EN case TIMER_1: if (TIMER_1_DEV.CTRLA.bit.ENABLE) { return 0; } PM->APBCMASK.reg |= PM_APBCMASK_TC4; /* reset timer */ TIMER_1_DEV.CTRLA.bit.SWRST = 1; while (TIMER_1_DEV.CTRLA.bit.SWRST) {} TIMER_1_DEV.CTRLA.bit.MODE = TC_CTRLA_MODE_COUNT32_Val; #if CLOCK_USE_PLL /* sourced by 1MHz and prescaler 1 to reach 1MHz */ TIMER_1_DEV.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV1_Val; #else /* sourced by 8MHz with Presc 8 results in 1Mhz clk */ TIMER_1_DEV.CTRLA.bit.PRESCALER = TC_CTRLA_PRESCALER_DIV8_Val; #endif /* choose normal frequency operation */ TIMER_1_DEV.CTRLA.bit.WAVEGEN = TC_CTRLA_WAVEGEN_NFRQ_Val; break; #endif case TIMER_UNDEFINED: default: return -1; } /* save callback */ config[dev].cb = cb; config[dev].arg = arg; /* enable interrupts for given timer */ _irq_enable(dev); timer_start(dev); return 0; } int timer_set_absolute(tim_t dev, int channel, unsigned int value) { DEBUG("Setting timer %i channel %i to %i\n", dev, channel, value); /* get timer base register address */ switch (dev) { #if TIMER_0_EN case TIMER_0: /* set timeout value */ switch (channel) { case 0: TIMER_0_DEV.INTFLAG.bit.MC0 = 1; TIMER_0_DEV.CC[0].reg = value; TIMER_0_DEV.INTENSET.bit.MC0 = 1; break; case 1: TIMER_0_DEV.INTFLAG.bit.MC1 = 1; TIMER_0_DEV.CC[1].reg = value; TIMER_0_DEV.INTENSET.bit.MC1 = 1; break; default: return -1; } break; #endif #if TIMER_1_EN case TIMER_1: /* set timeout value */ switch (channel) { case 0: TIMER_1_DEV.INTFLAG.bit.MC0 = 1; TIMER_1_DEV.CC[0].reg = value; TIMER_1_DEV.INTENSET.bit.MC0 = 1; break; case 1: TIMER_1_DEV.INTFLAG.bit.MC1 = 1; TIMER_1_DEV.CC[1].reg = value; TIMER_1_DEV.INTENSET.bit.MC1 = 1; break; default: return -1; } break; #endif case TIMER_UNDEFINED: default: return -1; } return 1; } int timer_clear(tim_t dev, int channel) { /* get timer base register address */ switch (dev) { #if TIMER_0_EN case TIMER_0: switch (channel) { case 0: TIMER_0_DEV.INTFLAG.bit.MC0 = 1; TIMER_0_DEV.INTENCLR.bit.MC0 = 1; break; case 1: TIMER_0_DEV.INTFLAG.bit.MC1 = 1; TIMER_0_DEV.INTENCLR.bit.MC1 = 1; break; default: return -1; } break; #endif #if TIMER_1_EN case TIMER_1: switch (channel) { case 0: TIMER_1_DEV.INTFLAG.bit.MC0 = 1; TIMER_1_DEV.INTENCLR.bit.MC0 = 1; break; case 1: TIMER_1_DEV.INTFLAG.bit.MC1 = 1; TIMER_1_DEV.INTENCLR.bit.MC1 = 1; break; default: return -1; } break; #endif case TIMER_UNDEFINED: default: return -1; } return 1; } unsigned int timer_read(tim_t dev) { switch (dev) { #if TIMER_0_EN case TIMER_0: /* request syncronisation */ TIMER_0_DEV.READREQ.reg = TC_READREQ_RREQ | TC_READREQ_ADDR(0x10); while (TIMER_0_DEV.STATUS.bit.SYNCBUSY) {} return TIMER_0_DEV.COUNT.reg; #endif #if TIMER_1_EN case TIMER_1: /* request syncronisation */ TIMER_1_DEV.READREQ.reg = TC_READREQ_RREQ | TC_READREQ_ADDR(0x10); while (TIMER_1_DEV.STATUS.bit.SYNCBUSY) {} return TIMER_1_DEV.COUNT.reg; #endif default: return 0; } } void timer_stop(tim_t dev) { switch (dev) { #if TIMER_0_EN case TIMER_0: TIMER_0_DEV.CTRLA.bit.ENABLE = 0; break; #endif #if TIMER_1_EN case TIMER_1: TIMER_1_DEV.CTRLA.bit.ENABLE = 0; break; #endif case TIMER_UNDEFINED: break; } } void timer_start(tim_t dev) { switch (dev) { #if TIMER_0_EN case TIMER_0: TIMER_0_DEV.CTRLA.bit.ENABLE = 1; break; #endif #if TIMER_1_EN case TIMER_1: TIMER_1_DEV.CTRLA.bit.ENABLE = 1; break; #endif case TIMER_UNDEFINED: break; } } static inline void _irq_enable(tim_t dev) { switch (dev) { #if TIMER_0_EN case TIMER_0: NVIC_EnableIRQ(TC3_IRQn); break; #endif #if TIMER_1_EN case TIMER_1: NVIC_EnableIRQ(TC4_IRQn); break; #endif case TIMER_UNDEFINED: break; } } #if TIMER_0_EN void TIMER_0_ISR(void) { if (TIMER_0_DEV.INTFLAG.bit.MC0 && TIMER_0_DEV.INTENSET.bit.MC0) { if(config[TIMER_0].cb) { TIMER_0_DEV.INTFLAG.bit.MC0 = 1; TIMER_0_DEV.INTENCLR.reg = TC_INTENCLR_MC0; config[TIMER_0].cb(config[TIMER_0].arg, 0); } } else if (TIMER_0_DEV.INTFLAG.bit.MC1 && TIMER_0_DEV.INTENSET.bit.MC1) { if(config[TIMER_0].cb) { TIMER_0_DEV.INTFLAG.bit.MC1 = 1; TIMER_0_DEV.INTENCLR.reg = TC_INTENCLR_MC1; config[TIMER_0].cb(config[TIMER_0].arg, 1); } } cortexm_isr_end(); } #endif /* TIMER_0_EN */ #if TIMER_1_EN void TIMER_1_ISR(void) { if (TIMER_1_DEV.INTFLAG.bit.MC0 && TIMER_1_DEV.INTENSET.bit.MC0) { if (config[TIMER_1].cb) { TIMER_1_DEV.INTFLAG.bit.MC0 = 1; TIMER_1_DEV.INTENCLR.reg = TC_INTENCLR_MC0; config[TIMER_1].cb(config[TIMER_1].arg, 0); } } else if (TIMER_1_DEV.INTFLAG.bit.MC1 && TIMER_1_DEV.INTENSET.bit.MC1) { if(config[TIMER_1].cb) { TIMER_1_DEV.INTFLAG.bit.MC1 = 1; TIMER_1_DEV.INTENCLR.reg = TC_INTENCLR_MC1; config[TIMER_1].cb(config[TIMER_1].arg, 1); } } cortexm_isr_end(); } #endif /* TIMER_1_EN */