/** * virtual timer * * Copyright (C) 2013 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License. See the file LICENSE in the top level directory for more * details. * * @ingroup vtimer * @{ * @file * @author Kaspar Schleiser (author) * @author Oliver Hahm (modifications) * @author Ludwig Ortmann (cleaning up the mess) * @} */ #include #include #include #include #include "irq.h" #include "queue.h" #include "timex.h" #include "hwtimer.h" #include "msg.h" #include "mutex.h" #include "thread.h" #include "queue.h" #include "vtimer.h" #define ENABLE_DEBUG (0) #include "debug.h" #define VTIMER_THRESHOLD 20UL #define VTIMER_BACKOFF 10UL #define SECONDS_PER_TICK (4096U) #define MICROSECONDS_PER_TICK (4096UL * 1000000) void vtimer_callback(void *ptr); void vtimer_tick(void *ptr); static int vtimer_set(vtimer_t *timer); static int set_longterm(vtimer_t *timer); static int set_shortterm(vtimer_t *timer); #if ENABLE_DEBUG void vtimer_print(vtimer_t *t); #endif static queue_node_t longterm_queue_root; static queue_node_t shortterm_queue_root; static vtimer_t longterm_tick_timer; static uint32_t longterm_tick_start; static volatile int in_callback = false; static int hwtimer_id = -1; static uint32_t hwtimer_next_absolute; static uint32_t seconds = 0; static int set_longterm(vtimer_t *timer) { timer->queue_entry.priority = timer->absolute.seconds; queue_priority_add(&longterm_queue_root, (queue_node_t *)timer); return 0; } static int update_shortterm(void) { if (shortterm_queue_root.next == NULL) { /* there is no vtimer to schedule, queue is empty */ DEBUG("update_shortterm: shortterm_queue_root.next == NULL - dont know what to do here\n"); return 0; } if (hwtimer_id != -1) { /* there is a running hwtimer for us */ if (hwtimer_next_absolute != shortterm_queue_root.next->priority) { /* the next timer in the vtimer queue is not the next hwtimer */ /* we have to remove the running hwtimer (and schedule a new one) */ hwtimer_remove(hwtimer_id); } else { /* the next vtimer is the next hwtimer, nothing to do */ return 0; } } /* short term part of the next vtimer */ hwtimer_next_absolute = shortterm_queue_root.next->priority; uint32_t next = hwtimer_next_absolute; /* current short term time */ uint32_t now = HWTIMER_TICKS_TO_US(hwtimer_now()); /* make sure the longterm_tick_timer does not get truncated */ if (((vtimer_t*)shortterm_queue_root.next)->action != vtimer_tick) { /* the next vtimer to schedule is the long term tick */ /* it has a shortterm offset of longterm_tick_start */ next += longterm_tick_start; } if((next - HWTIMER_TICKS_TO_US(VTIMER_THRESHOLD) - now) > MICROSECONDS_PER_TICK ) { DEBUG("truncating next (next - HWTIMER_TICKS_TO_US(VTIMER_THRESHOLD) - now): %lu\n", (next - HWTIMER_TICKS_TO_US(VTIMER_THRESHOLD) - now)); next = now + HWTIMER_TICKS_TO_US(VTIMER_BACKOFF); } DEBUG("update_shortterm: Set hwtimer to %" PRIu32 " (now=%lu)\n", next, HWTIMER_TICKS_TO_US(hwtimer_now())); hwtimer_id = hwtimer_set_absolute(HWTIMER_TICKS(next), vtimer_callback, NULL); return 0; } void vtimer_tick(void *ptr) { (void) ptr; DEBUG("vtimer_tick().\n"); seconds += SECONDS_PER_TICK; longterm_tick_start = longterm_tick_timer.absolute.microseconds; longterm_tick_timer.absolute.microseconds += MICROSECONDS_PER_TICK; set_shortterm(&longterm_tick_timer); while (longterm_queue_root.next) { vtimer_t *timer = (vtimer_t *) longterm_queue_root.next; if (timer->absolute.seconds == seconds) { timer = (vtimer_t *) queue_remove_head(&longterm_queue_root); set_shortterm(timer); } else { break; } } } static int set_shortterm(vtimer_t *timer) { DEBUG("set_shortterm(): Absolute: %" PRIu32 " %" PRIu32 "\n", timer->absolute.seconds, timer->absolute.microseconds); timer->queue_entry.priority = timer->absolute.microseconds; queue_priority_add(&shortterm_queue_root, (queue_node_t *)timer); return 1; } void vtimer_callback(void *ptr) { DEBUG("vtimer_callback ptr=%p\n", ptr); (void) ptr; vtimer_t *timer; in_callback = true; hwtimer_id = -1; /* get the vtimer that fired */ timer = (vtimer_t *)queue_remove_head(&shortterm_queue_root); #if ENABLE_DEBUG vtimer_print(timer); #endif DEBUG("vtimer_callback(): Shooting %" PRIu32 ".\n", timer->absolute.microseconds); /* shoot timer */ if (timer->action == (void (*)(void *)) msg_send_int) { msg_t msg; msg.type = MSG_TIMER; msg.content.value = (unsigned int) timer->arg; msg_send_int(&msg, timer->pid); } else if (timer->action == (void (*)(void *)) thread_wakeup){ timer->action(timer->arg); } else if (timer->action == vtimer_tick) { vtimer_tick(NULL); } else if (timer->action == (void (*)(void *)) mutex_unlock) { mutex_t *mutex = (mutex_t *) timer->arg; timer->action(mutex); } else { DEBUG("Timer was poisoned.\n"); } in_callback = false; update_shortterm(); } void normalize_to_tick(timex_t *time) { DEBUG("Normalizing: %" PRIu32 " %" PRIu32 "\n", time->seconds, time->microseconds); uint32_t seconds_tmp = time->seconds % SECONDS_PER_TICK; time->seconds -= seconds_tmp; uint32_t usecs_tmp = time->microseconds + (seconds_tmp * 1000000); DEBUG("Normalizin2: %" PRIu32 " %" PRIu32 "\n", time->seconds, usecs_tmp); if (usecs_tmp < time->microseconds) { usecs_tmp -= MICROSECONDS_PER_TICK; time->seconds += SECONDS_PER_TICK; } if (usecs_tmp > MICROSECONDS_PER_TICK) { usecs_tmp -= MICROSECONDS_PER_TICK; time->seconds += SECONDS_PER_TICK; } time->microseconds = usecs_tmp; DEBUG(" Result: %" PRIu32 " %" PRIu32 "\n", time->seconds, time->microseconds); } static int vtimer_set(vtimer_t *timer) { DEBUG("vtimer_set(): New timer. Offset: %" PRIu32 " %" PRIu32 "\n", timer->absolute.seconds, timer->absolute.microseconds); timex_t now; vtimer_now(&now); timer->absolute = timex_add(now, timer->absolute); normalize_to_tick(&(timer->absolute)); DEBUG("vtimer_set(): Absolute: %" PRIu32 " %" PRIu32 "\n", timer->absolute.seconds, timer->absolute.microseconds); DEBUG("vtimer_set(): NOW: %" PRIu32 " %" PRIu32 "\n", now.seconds, now.microseconds); int result = 0; if (timer->absolute.seconds == 0) { if (timer->absolute.microseconds > 10) { timer->absolute.microseconds -= 10; } } int state = disableIRQ(); if (timer->absolute.seconds != seconds) { /* we're long-term */ DEBUG("vtimer_set(): setting long_term\n"); result = set_longterm(timer); } else { DEBUG("vtimer_set(): setting short_term\n"); if (set_shortterm(timer)) { /* delay update of next shortterm timer if we * are called from within vtimer_callback. */ if (!in_callback) { result = update_shortterm(); } } } restoreIRQ(state); return result; } void vtimer_now(timex_t *out) { uint32_t us = HWTIMER_TICKS_TO_US(hwtimer_now() - longterm_tick_start); out->seconds = seconds + us / (1000 * 1000); out->microseconds = us % (1000 * 1000); } void vtimer_gettimeofday(struct timeval *tp) { timex_t now; vtimer_now(&now); tp->tv_sec = now.seconds; tp->tv_usec = now.microseconds; } void vtimer_get_localtime(struct tm *localt) { timex_t now; vtimer_now(&now); localt->tm_sec = now.seconds % 60; localt->tm_min = (now.seconds / 60) % 60; localt->tm_hour = (now.seconds / 60 / 60) % 24; // TODO: fill the other fields } int vtimer_init() { DEBUG("vtimer_init().\n"); int state = disableIRQ(); seconds = 0; longterm_tick_start = 0; longterm_tick_timer.action = vtimer_tick; longterm_tick_timer.arg = NULL; longterm_tick_timer.absolute.seconds = 0; longterm_tick_timer.absolute.microseconds = MICROSECONDS_PER_TICK; DEBUG("vtimer_init(): Setting longterm tick to %" PRIu32 "\n", longterm_tick_timer.absolute.microseconds); set_shortterm(&longterm_tick_timer); update_shortterm(); restoreIRQ(state); return 0; } int vtimer_set_wakeup(vtimer_t *t, timex_t interval, int pid) { int ret; t->action = (void(*)(void *)) thread_wakeup; t->arg = (void *) pid; t->absolute = interval; t->pid = 0; ret = vtimer_set(t); return ret; } int vtimer_usleep(uint32_t usecs) { timex_t offset = timex_set(0, usecs); return vtimer_sleep(offset); } int vtimer_sleep(timex_t time) { int ret; vtimer_t t; mutex_t mutex; mutex_init(&mutex); mutex_lock(&mutex); t.action = (void(*)(void *)) mutex_unlock; t.arg = (void *) &mutex; t.absolute = time; ret = vtimer_set(&t); mutex_lock(&mutex); return ret; } int vtimer_remove(vtimer_t *t) { queue_remove(&shortterm_queue_root, (queue_node_t *)t); queue_remove(&longterm_queue_root, (queue_node_t *)t); update_shortterm(); if (!inISR()) { eINT(); } return 0; } int vtimer_set_msg(vtimer_t *t, timex_t interval, unsigned int pid, void *ptr) { t->action = (void(*)(void *)) msg_send_int; t->arg = ptr; t->absolute = interval; t->pid = pid; vtimer_set(t); return 0; } int vtimer_msg_receive_timeout(msg_t *m, timex_t timeout) { msg_t timeout_message; timeout_message.type = MSG_TIMER; timeout_message.content.ptr = (char *) &timeout_message; vtimer_t t; vtimer_set_msg(&t, timeout, thread_pid, &timeout_message); msg_receive(m); if (m->type == MSG_TIMER && m->content.ptr == (char *) &timeout_message) { /* we hit the timeout */ return -1; } else { vtimer_remove(&t); return 1; } } #if ENABLE_DEBUG void vtimer_print_short_queue(){ queue_print(&shortterm_queue_root); } void vtimer_print_long_queue(){ queue_print(&longterm_queue_root); } void vtimer_print(vtimer_t *t) { printf("Seconds: %" PRIu32 " - Microseconds: %" PRIu32 "\n \ action: %p\n \ arg: %p\n \ pid: %u\n", t->absolute.seconds, t->absolute.microseconds, t->action, t->arg, t->pid); } #endif