/* * Copyright (C) 2014-2016 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_stm32_common * @{ * * @file * @brief Low-level timer driver implementation * * @author Hauke Petersen * @author Thomas Eichinger * * @} */ #include "cpu.h" #include "periph/timer.h" /** * @brief Interrupt context for each configured timer */ static timer_isr_ctx_t isr_ctx[TIMER_NUMOF]; /** * @brief Get the timer device */ static inline TIM_TypeDef *dev(tim_t tim) { return timer_config[tim].dev; } int timer_init(tim_t tim, unsigned long freq, timer_cb_t cb, void *arg) { /* check if device is valid */ if (tim >= TIMER_NUMOF) { return -1; } /* remember the interrupt context */ isr_ctx[tim].cb = cb; isr_ctx[tim].arg = arg; /* enable the peripheral clock */ periph_clk_en(timer_config[tim].bus, timer_config[tim].rcc_mask); /* configure the timer as upcounter in continuous mode */ dev(tim)->CR1 = 0; dev(tim)->CR2 = 0; dev(tim)->ARR = timer_config[tim].max; /* set prescaler: the STM32F1 and STM32F2 introduce a clock multiplier of 2 * in the case the APB1 prescaler is != 1, so we need to catch this * -> see reference manual section 7.2.1 and section 5.2, respectively */ #if (defined(CPU_FAM_STM32F1) || defined(CPU_FAM_STM32F2)) \ && (CLOCK_APB1 < CLOCK_CORECLOCK) dev(tim)->PSC = (((periph_apb_clk(timer_config[tim].bus) * 2) / freq) - 1); #else dev(tim)->PSC = ((periph_apb_clk(timer_config[tim].bus) / freq) - 1); #endif /* generate an update event to apply our configuration */ dev(tim)->EGR = TIM_EGR_UG; /* enable the timer's interrupt */ timer_irq_enable(tim); /* reset the counter and start the timer */ timer_start(tim); return 0; } int timer_set(tim_t tim, int channel, unsigned int timeout) { int now = timer_read(tim); return timer_set_absolute(tim, channel, now + timeout); } int timer_set_absolute(tim_t tim, int channel, unsigned int value) { if (channel >= TIMER_CHAN) { return -1; } dev(tim)->CCR[channel] = (value & timer_config[tim].max); dev(tim)->SR &= ~(TIM_SR_CC1IF << channel); dev(tim)->DIER |= (TIM_DIER_CC1IE << channel); return 0; } int timer_clear(tim_t tim, int channel) { if (channel >= TIMER_CHAN) { return -1; } dev(tim)->DIER &= ~(TIM_DIER_CC1IE << channel); return 0; } unsigned int timer_read(tim_t tim) { return (unsigned int)dev(tim)->CNT; } void timer_start(tim_t tim) { dev(tim)->CR1 |= TIM_CR1_CEN; } void timer_stop(tim_t tim) { dev(tim)->CR1 &= ~(TIM_CR1_CEN); } void timer_irq_enable(tim_t tim) { NVIC_EnableIRQ(timer_config[tim].irqn); } void timer_irq_disable(tim_t tim) { NVIC_DisableIRQ(timer_config[tim].irqn); } static inline void irq_handler(tim_t tim) { uint32_t status = (dev(tim)->SR & dev(tim)->DIER); for (unsigned int i = 0; i < TIMER_CHAN; i++) { if (status & (TIM_SR_CC1IF << i)) { dev(tim)->DIER &= ~(TIM_DIER_CC1IE << i); isr_ctx[tim].cb(isr_ctx[tim].arg, i); } } cortexm_isr_end(); } #ifdef TIMER_0_ISR void TIMER_0_ISR(void) { irq_handler(0); } #endif #ifdef TIMER_1_ISR void TIMER_1_ISR(void) { irq_handler(1); } #endif #ifdef TIMER_2_ISR void TIMER_2_ISR(void) { irq_handler(2); } #endif #ifdef TIMER_3_ISR void TIMER_3_ISR(void) { irq_handler(3); } #endif #ifdef TIMER_4_ISR void TIMER_4_ISR(void) { irq_handler(4); } #endif