/* * Copyright (C) 2015 Jan Pohlmann * 2017 we-sens.com * 2018 Inria * 2018 HAW Hamburg * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_i2c * @{ * * @file * @brief Low-level I2C driver implementation * * This driver supports the STM32 F0, F3, F7, L0, L4, L5 & WB families. * @note This implementation only implements the 7-bit addressing polling mode * (for now interrupt mode is not available) * * @author Peter Kietzmann * @author Hauke Petersen * @author Thomas Eichinger * @author Jan Pohlmann * @author AurĂ©lien Fillau * @author Alexandre Abadie * @author Kevin Weiss * * @} */ #include #include #include #include "cpu.h" #include "mutex.h" #include "byteorder.h" #include "panic.h" #include "stmclk.h" #include "periph/i2c.h" #include "periph/gpio.h" #include "periph_conf.h" #define ENABLE_DEBUG 0 #include "debug.h" #define TICK_TIMEOUT (0xFFFF) #define I2C_IRQ_PRIO (1) #define I2C_FLAG_READ (I2C_READ << I2C_CR2_RD_WRN_Pos) #define I2C_FLAG_WRITE (0) #define CLEAR_FLAG (I2C_ICR_NACKCF | I2C_ICR_ARLOCF | I2C_ICR_BERRCF | I2C_ICR_ADDRCF) #if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F3) #define I2C_CLOCK_SRC_REG (RCC->CFGR3) #elif defined(RCC_CCIPR_I2C1SEL) #define I2C_CLOCK_SRC_REG (RCC->CCIPR) #elif defined(RCC_CCIPR1_I2C1SEL) #define I2C_CLOCK_SRC_REG (RCC->CCIPR1) #elif defined(RCC_DCKCFGR2_I2C1SEL) #define I2C_CLOCK_SRC_REG (RCC->DCKCFGR2) #endif static uint32_t hsi_state; /* static function definitions */ static inline void _i2c_init(I2C_TypeDef *i2c, uint32_t timing); static int _write(I2C_TypeDef *i2c, uint16_t addr, const void *data, size_t length, uint8_t flags, uint32_t cr2_flags); static int _start(I2C_TypeDef *i2c, uint32_t cr2, uint8_t flags); static int _stop(I2C_TypeDef *i2c); static int _wait_isr_set(I2C_TypeDef *i2c, uint32_t mask, uint8_t flags); static inline int _wait_for_bus(I2C_TypeDef *i2c); /** * @brief Array holding one pre-initialized mutex for each I2C device */ static mutex_t locks[I2C_NUMOF]; void i2c_init(i2c_t dev) { assert(dev < I2C_NUMOF); DEBUG("[i2c] init: initializing device\n"); mutex_init(&locks[dev]); I2C_TypeDef *i2c = i2c_config[dev].dev; periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask); NVIC_SetPriority(i2c_config[dev].irqn, I2C_IRQ_PRIO); NVIC_EnableIRQ(i2c_config[dev].irqn); #if defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32F3) || \ defined(CPU_FAM_STM32F7) || defined(CPU_FAM_STM32L4) || \ defined(CPU_FAM_STM32L5) || defined(CPU_FAM_STM32WB) /* select I2C clock source */ I2C_CLOCK_SRC_REG |= i2c_config[dev].rcc_sw_mask; #endif DEBUG("[i2c] init: configuring pins\n"); /* configure pins */ gpio_init(i2c_config[dev].scl_pin, GPIO_OD_PU); gpio_init_af(i2c_config[dev].scl_pin, i2c_config[dev].scl_af); gpio_init(i2c_config[dev].sda_pin, GPIO_OD_PU); gpio_init_af(i2c_config[dev].sda_pin, i2c_config[dev].sda_af); DEBUG("[i2c] init: configuring device\n"); /* set the timing register value from predefined values */ i2c_timing_param_t tp = timing_params[i2c_config[dev].speed]; uint32_t timing = (( (uint32_t)tp.presc << I2C_TIMINGR_PRESC_Pos) | ( (uint32_t)tp.scldel << I2C_TIMINGR_SCLDEL_Pos) | ( (uint32_t)tp.sdadel << I2C_TIMINGR_SDADEL_Pos) | ( (uint16_t)tp.sclh << I2C_TIMINGR_SCLH_Pos) | tp.scll); _i2c_init(i2c, timing); } static void _i2c_init(I2C_TypeDef *i2c, uint32_t timing) { assert(i2c != NULL); /* disable device */ i2c->CR1 &= ~(I2C_CR1_PE); /* configure analog noise filter */ i2c->CR1 |= I2C_CR1_ANFOFF; /* configure digital noise filter */ i2c->CR1 |= I2C_CR1_DNF; /* set timing registers */ i2c->TIMINGR = timing; /* configure clock stretching */ i2c->CR1 &= ~(I2C_CR1_NOSTRETCH); /* Clear interrupt */ i2c->ICR |= CLEAR_FLAG; /* enable device */ i2c->CR1 |= I2C_CR1_PE; } void i2c_acquire(i2c_t dev) { assert(dev < I2C_NUMOF); mutex_lock(&locks[dev]); hsi_state = (RCC->CR & RCC_CR_HSION); if (!hsi_state) { /* the internal RC oscillator (HSI) must be enabled */ stmclk_enable_hsi(); } periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask); /* enable device */ i2c_config[dev].dev->CR1 |= I2C_CR1_PE; } void i2c_release(i2c_t dev) { assert(dev < I2C_NUMOF); /* disable device */ i2c_config[dev].dev->CR1 &= ~(I2C_CR1_PE); _wait_for_bus(i2c_config[dev].dev); periph_clk_dis(i2c_config[dev].bus, i2c_config[dev].rcc_mask); if (!hsi_state) { stmclk_disable_hsi(); } mutex_unlock(&locks[dev]); } int i2c_write_regs(i2c_t dev, uint16_t addr, uint16_t reg, const void *data, size_t len, uint8_t flags) { assert(dev < I2C_NUMOF); if (flags & (I2C_NOSTOP | I2C_NOSTART)) { return -EOPNOTSUPP; } I2C_TypeDef *i2c = i2c_config[dev].dev; assert(i2c != NULL); DEBUG("[i2c] write_regs: Starting\n"); /* As a higher level function we know the bus should be free */ if (i2c->ISR & I2C_ISR_BUSY) { return -EAGAIN; } /* Handle endianness of register if 16 bit */ if (flags & I2C_REG16) { reg = htons(reg); /* Make sure register is in big-endian on I2C bus */ } /* First set ADDR and register with no stop */ /* No RELOAD should be set so repeated start is valid */ int ret = _write(i2c, addr, ®, (flags & I2C_REG16) ? 2 : 1, flags | I2C_NOSTOP, I2C_CR2_RELOAD); if (ret < 0) { return ret; } /* Then get the data from device */ return _write(i2c, addr, data, len, I2C_NOSTART, 0); } int i2c_read_bytes(i2c_t dev, uint16_t address, void *data, size_t length, uint8_t flags) { assert(dev < I2C_NUMOF && length < PERIPH_I2C_MAX_BYTES_PER_FRAME); I2C_TypeDef *i2c = i2c_config[dev].dev; assert(i2c != NULL); /* If reload was set, cannot send a repeated start */ if ((i2c->ISR & I2C_ISR_TCR) && !(flags & I2C_NOSTART)) { return -EOPNOTSUPP; } DEBUG("[i2c] read_bytes: Starting\n"); /* RELOAD is needed because we don't know the full frame */ int ret = _start(i2c, (address << 1) | (length << I2C_CR2_NBYTES_Pos) | I2C_CR2_RELOAD | I2C_FLAG_READ, flags); if (ret < 0) { return ret; } for (size_t i = 0; i < length; i++) { /* wait for transfer to finish */ DEBUG("[i2c] read_bytes: Waiting for DR to be full\n"); ret = _wait_isr_set(i2c, I2C_ISR_RXNE, flags); if (ret < 0) { return ret; } /* read data from data register */ ((uint8_t*)data)[i]= i2c->RXDR; DEBUG("[i2c] read_bytes: DR full, read 0x%02X\n", ((uint8_t*)data)[i]); } if (flags & I2C_NOSTOP) { /* With NOSTOP, the TCR indicates that the next command is ready */ /* TCR is needed because RELOAD is set preventing a NACK on last byte */ return _wait_isr_set(i2c, I2C_ISR_TCR, flags); } /* Wait until stop before other commands are sent */ ret = _wait_isr_set(i2c, I2C_ISR_STOPF, flags); if (ret < 0) { return ret; } return _wait_for_bus(i2c); } /** * Cannot support continuous writes or frame splitting at this level. If an * I2C_NOSTOP has been sent it must be followed by a repeated start or stop. */ int i2c_write_bytes(i2c_t dev, uint16_t address, const void *data, size_t length, uint8_t flags) { assert(dev < I2C_NUMOF); I2C_TypeDef *i2c = i2c_config[dev].dev; DEBUG("[i2c] write_bytes: Starting\n"); return _write(i2c, address, data, length, flags, 0); } static int _write(I2C_TypeDef *i2c, uint16_t addr, const void *data, size_t length, uint8_t flags, uint32_t cr2_flags) { assert(i2c != NULL && length < PERIPH_I2C_MAX_BYTES_PER_FRAME); /* If reload was NOT set, must either stop or start */ if ((i2c->ISR & I2C_ISR_TC) && (flags & I2C_NOSTART)) { return -EOPNOTSUPP; } int ret = _start(i2c, (addr << 1) | (length << I2C_CR2_NBYTES_Pos) | cr2_flags, flags); if (ret < 0) { return ret; } for (size_t i = 0; i < length; i++) { DEBUG("[i2c] write_bytes: Waiting for TX reg to be free\n"); ret = _wait_isr_set(i2c, I2C_ISR_TXIS, flags); if (ret < 0) { return ret; } DEBUG("[i2c] write_bytes: TX is free so send byte\n"); /* write data to data register */ i2c->TXDR = ((uint8_t*)data)[i]; } if (flags & I2C_NOSTOP) { if (cr2_flags & I2C_CR2_RELOAD) { DEBUG("[i2c] write_bytes: Waiting for TCR\n"); /* With NOSTOP, the TCR indicates that the next command is ready */ /* TCR is needed because RELOAD allows loading more bytes */ return _wait_isr_set(i2c, I2C_ISR_TCR, flags); } else { DEBUG("[i2c] write_bytes: Waiting for TC\n"); /* With NOSTOP, the TC indicates that the next command is ready */ /* TC is needed because no reload is set for repeated start */ return _wait_isr_set(i2c, I2C_ISR_TC, flags); } } DEBUG("[i2c] write_bytes: Waiting for stop\n"); /* Wait until stop before other commands are sent */ ret = _wait_isr_set(i2c, I2C_ISR_STOPF, flags); if (ret < 0) { return ret; } return _wait_for_bus(i2c); } static int _start(I2C_TypeDef *i2c, uint32_t cr2, uint8_t flags) { assert(i2c != NULL); assert((i2c->ISR & I2C_ISR_BUSY) || !(flags & I2C_NOSTART)); i2c->ICR |= CLEAR_FLAG; if (flags & I2C_ADDR10) { return -EOPNOTSUPP; } if (!(flags & I2C_NOSTART)) { DEBUG("[i2c] start: Generate start condition\n"); /* Generate start condition */ cr2 |= I2C_CR2_START; } if (!(flags & I2C_NOSTOP)) { cr2 |= I2C_CR2_AUTOEND; cr2 &= ~(I2C_CR2_RELOAD); } DEBUG("[i2c] start: Setting CR2=0x%08x\n", (unsigned int)cr2); i2c->CR2 = cr2; if (!(flags & I2C_NOSTART)) { uint16_t tick = TICK_TIMEOUT; while ((i2c->CR2 & I2C_CR2_START) && tick--) { if (!tick) { /* Try to stop for state error recovery */ _stop(i2c); return -ETIMEDOUT; } } DEBUG("[i2c] start: Start condition and address generated\n"); /* Check if the device is there */ if ((i2c->ISR & I2C_ISR_NACKF)) { i2c->ICR |= I2C_ICR_NACKCF; _stop(i2c); return -ENXIO; } } return 0; } static int _stop(I2C_TypeDef *i2c) { /* Send stop condition */ DEBUG("[i2c] stop: Generate stop condition\n"); i2c->CR2 |= I2C_CR2_STOP; /* Wait for the stop to complete */ uint16_t tick = TICK_TIMEOUT; while ((i2c->CR2 & I2C_CR2_STOP) && tick--) {} if (!tick) { return -ETIMEDOUT; } DEBUG("[i2c] stop: Stop condition succeeded\n"); if (_wait_for_bus(i2c) < 0) { return -ETIMEDOUT; } DEBUG("[i2c] stop: Bus is free\n"); return 0; } static int _wait_isr_set(I2C_TypeDef *i2c, uint32_t mask, uint8_t flags) { uint16_t tick = TICK_TIMEOUT; while (tick--) { uint32_t isr = i2c->ISR; if (isr & I2C_ISR_NACKF) { DEBUG("[i2c] wait_isr_set: NACK received\n"); /* Some devices have a valid data nack, if indicated don't stop */ if (!(flags & I2C_NOSTOP)) { _stop(i2c); } i2c->ICR |= CLEAR_FLAG; return -EIO; } if ((isr & I2C_ISR_ARLO) || (isr & I2C_ISR_BERR)) { DEBUG("[i2c] wait_isr_set: Arbitration lost or bus error\n"); _stop(i2c); i2c->ICR |= CLEAR_FLAG; return -EAGAIN; } if (isr & mask) { DEBUG("[i2c] wait_isr_set: ISR 0x%08x set\n", (unsigned int)mask); return 0; } } /* * If timeout occurs this means a problem that must be handled on a higher * level. A SWRST is recommended by the datasheet. */ return -ETIMEDOUT; } static inline int _wait_for_bus(I2C_TypeDef *i2c) { uint16_t tick = TICK_TIMEOUT; while (tick-- && (i2c->ISR & I2C_ISR_BUSY)) {} if (!tick) { return -ETIMEDOUT; } return 0; } static inline void irq_handler(i2c_t dev) { assert(dev < I2C_NUMOF); I2C_TypeDef *i2c = i2c_config[dev].dev; unsigned state = i2c->ISR; DEBUG("\n\n### I2C ERROR OCCURRED ###\n"); DEBUG("status: %08x\n", state); if (state & I2C_ISR_OVR) { DEBUG("OVR\n"); } if (state & I2C_ISR_NACKF) { DEBUG("AF\n"); } if (state & I2C_ISR_ARLO) { DEBUG("ARLO\n"); } if (state & I2C_ISR_BERR) { DEBUG("BERR\n"); } if (state & I2C_ISR_PECERR) { DEBUG("PECERR\n"); } if (state & I2C_ISR_TIMEOUT) { DEBUG("TIMEOUT\n"); } if (state & I2C_ISR_ALERT) { DEBUG("SMBALERT\n"); } core_panic(PANIC_GENERAL_ERROR, "I2C FAULT"); } #ifdef I2C_0_ISR void I2C_0_ISR(void) { irq_handler(I2C_DEV(0)); } #endif /* I2C_0_ISR */ #ifdef I2C_1_ISR void I2C_1_ISR(void) { irq_handler(I2C_DEV(1)); } #endif /* I2C_1_ISR */