/* * Copyright (C) 2018 Kaspar Schleiser * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @defgroup sys_ztimer ztimer high level timer abstraction layer * @ingroup sys * @brief High level timer abstraction layer * * # Introduction * * ztimer provides a high level abstraction of hardware timers for application * timing needs. * * The basic functions of the ztimer module are ztimer_now(), ztimer_sleep(), * ztimer_set() and ztimer_remove(). * * They all take a pointer to a clock device (or virtual timer device) as first * parameter. * * RIOT provides ZTIMER_USEC, ZTIMER_MSEC, ZTIMER_SEC by default, which can be * used in an application by depending on the modules ztimer_usec, ztimer_msec * or ztimer_sec. They will then automatically get configured. * * Every ztimer clock allows multiple timeouts to be scheduled. They all * provide unsigned 32bit range. In this documentation, a timeout or its * corresponding struct will be called `timer`, and when the time out has * passed, it has `triggered`. * * As ztimer can use arbitrarily configurable backends, a ztimer clock instance * can run at configurable frequencies. Throughout this documentation, one * clock step is called `tick`. For the pre-defined clocks ZTIMER_USEC, * ZTIMER_MSEC and ZTIMER_SEC, one clock tick corresponds to one microsecond, * one millisecond or one second, respectively. * * ztimer_now() returns the current clock tick count as uint32_t. * * ztimer_sleep() pauses the current thread for the passed amount of clock * ticks. E.g., ```ztimer_sleep(ZTIMER_SEC, 5);``` will suspend the currently * running thread for five seconds. * * ztimer_set() takes a ztimer_t object (containing a function pointer and * void * argument) and an interval as arguments. After at least the interval * (in number of ticks for the corresponding clock) has passed, the callback * will be called in interrupt context. * A timer can be cancelled using ztimer_remove(). * * Example: * * ``` * #include "ztimer.h" * * static void callback(void *arg) * { * puts(arg); * } * * int main() * { * ztimer_t timeout = { .callback=callback, .arg="Hello ztimer!" }; * ztimer_set(ZTIMER_SEC, &timeout, 2); * * ztimer_sleep(ZTIMER_SEC, 5); * } * ``` * * * # Design * * ## clocks, virtual timers, chaining * * The system is composed of clocks (virtual ztimer devices) which can be * chained to create an abstract view of a hardware timer/counter device. Each * ztimer clock acts as a operation on the next clock in the chain. At the end of * each ztimer chain there is always some kind of counter device object. * * Each clock device handles multiplexing (allowing multiple timers to be set) * and extension to full 32bit. * * Hardware interface submodules: * * - @ref ztimer_periph_rtt_init "ztimer_periph_rtt" interface for periph_rtt * - @ref ztimer_periph_rtc_init "ztimer_periph_rtc" interface for periph_rtc * - @ref ztimer_periph_timer_init "ztimer_periphtimer" interface for periph_timer * * Filter submodules: * * - @ref ztimer_convert_frac_init "ztimer_convert_frac" for fast frequency * conversion using the frac library * - @ref ztimer_convert_muldiv64_init "ztimer_convert_muldiv64" for accurate * but slow frequency conversion using 64bit division * * * A common chain could be: * * 1. ztimer_periph_timer (e.g., on top of an 1024Hz 16bit hardware timer) * 2. ztimer_convert_frac (to convert 1024 to 1000Hz) * * This is how e.g., the clock ZTIMER_MSEC might be configured on a specific * system. * * Every clock in the chain can always be used on its own. E.g. in the example * above, the ztimer_periph object can be used as ztimer clock with 1024Hz * ticks in addition to the ztimer_convert_frac with 1000Hz. * * * ## Timer handling * * Timers in ztimer are stored in a clock using a linked list for which each * entry stores the difference to the previous entry in the timer (T[n]). The * clock also stores the absolute time on which the relative offsets are based * (B), effectively storing the absolute target time for each entry (as B + * sum(T[0-n])). Storing the entries in this way allows all entries to use the * full width of the used uint32_t, compared to storing the absolute time. * * In order to prevent timer processing offset to add up, whenever a timer * triggers, the list's absolute base time is set to the *expected* trigger * time (B + T[0]). The underlying clock is then set to alarm at (now() + * (now() - B) + T[1]). Thus even though the list is keeping relative offsets, * the time keeping is done by keeping track of the absolute times. * * * ## Clock extension * * The API always allows setting full 32bit relative offsets for every clock. * * In some cases (e.g., a hardware timer only allowing getting/setting smaller * values or a conversion which would overflow uint32_t for large intervals), * ztimer takes care of extending timers. * This is enabled automatically for every ztimer clock that has a "max_value" * setting smaller than 2**32-1. If a ztimer_set() would overflow that value, * intermediate intervals of length (max_value / 2) are set until the remaining * interval fits into max_value. * If extension is enabled for a clock, ztimer_now() uses interval * checkpointing, storing the current time and corresponding clock tick value on * each call and using that information to calculate the current time. * This ensures correct ztimer_now() values if ztimer_now() is called at least * once every "max_value" ticks. This is ensured by scheduling intermediate * callbacks every (max_value / 2) ticks (even if no timeout is configured). * * * ## Reliability * * Care has been taken to avoid any unexpected behaviour of ztimer. In * particular, ztimer tries hard to avoid underflows (setting a backend timer * to a value at or behind the current time, causing the timer interrupt to * trigger one whole timer period too late). * This is done by always setting relative timeouts to backend timers, with * interrupts disabled and ensuring that very small values don't cause * underflows. * * * ## Configuration and convention * * As timer hardware and capabilities is diverse and ztimer allows configuring * and using arbitrary clock backends and conversions, it is envisioned to * provide default configurations that application developers can assume to be * available. * * These are implemented by using pointers to ztimer clocks using default names. * * For now, there are: * * ZTIMER_USEC: clock providing microsecond ticks * * ZTIMER_MSEC: clock providing millisecond ticks, using a low power timer if * available on the platform * * ZTIMER_SEC: clock providing second time, possibly using epoch semantics * * These pointers are defined in `ztimer.h` and can be used like this: * * ztimer_now(ZTIMER_USEC); * * They also need to be added to USEMODULE using the names `ztimer_usec`, * `ztimer_msec` and `ztimer_sec`. * * * ## Some notes on ztimer's accuracy * * 1. ztimer *should* wait "at least" the specified timeout * * 2. due to its implementation details, expect +-1 clock tick systemic * inaccuracy for all clocks. * * 3. for the predefined clocks (ZTIMER_USEC, ZTIMER_MSEC, ZTIMER_SEC), tick * conversion might be applied using ztimer_convert_*, causing errors due to * integer conversion and rounding. In particular, most RTT's closest match * for milliseconds are 1024Hz, which will be converted using convert_frac to * provide the 1ms clock. * * 4. Some platforms don't have any timer that can be configured to 1us. E.g., * the fe310 (hifive1/b) only supports a 32kHz timer, and most atmegas only * support 250kHz. In order to not completely break all applications using * ZTIMER_USEC, that clock will only provide ~30.5ms respectively 4us maximum * accuracy on those boards. With DEVELHELP=1, a warning will be printed at * boot time. * * 5. Due to +-1 systemic inaccuracies, it is advisable to use ZTIMER_MSEC for * second timers up to 49 days (instead of ZTIMER_SEC). * * @{ * * @file * @brief ztimer API * * @author Kaspar Schleiser * @author Joakim NohlgÄrd */ #ifndef ZTIMER_H #define ZTIMER_H #include #include "kernel_types.h" #include "msg.h" #ifdef __cplusplus extern "C" { #endif /** * @brief Disables interaction with pm_layered for a clock */ #define ZTIMER_CLOCK_NO_REQUIRED_PM_MODE (UINT8_MAX) /** * @brief ztimer_base_t forward declaration */ typedef struct ztimer_base ztimer_base_t; /** * @brief ztimer_clock_t forward declaration */ typedef struct ztimer_clock ztimer_clock_t; /** * @brief Minimum information for each timer */ struct ztimer_base { ztimer_base_t *next; /**< next timer in list */ uint32_t offset; /**< offset from last timer in list */ }; #if MODULE_ZTIMER_NOW64 typedef uint64_t ztimer_now_t; /**< type for ztimer_now() result */ #else typedef uint32_t ztimer_now_t; /**< type for ztimer_now() result */ #endif /** * @brief ztimer structure * * This type represents an instance of a timer, which is set on an * underlying clock object */ typedef struct { ztimer_base_t base; /**< clock list entry */ void (*callback)(void *arg); /**< timer callback function pointer */ void *arg; /**< timer callback argument */ } ztimer_t; /** * @brief ztimer backend method structure * * This table contains pointers to the virtual methods for a ztimer clock. * * These functions used by ztimer core to interact with the underlying clock. */ typedef struct { /** * @brief Set a new timer target */ void (*set)(ztimer_clock_t *clock, uint32_t val); /** * @brief Get the current count of the timer */ uint32_t (*now)(ztimer_clock_t *clock); /** * @brief Cancel any set target */ void (*cancel)(ztimer_clock_t *clock); } ztimer_ops_t; /** * @brief ztimer device structure */ struct ztimer_clock { ztimer_base_t list; /**< list of active timers */ const ztimer_ops_t *ops; /**< pointer to methods structure */ ztimer_base_t *last; /**< last timer in queue, for _is_set() */ uint32_t adjust; /**< will be subtracted on every set() */ #if MODULE_ZTIMER_EXTEND || MODULE_ZTIMER_NOW64 || DOXYGEN /* values used for checkpointed intervals and 32bit extension */ uint32_t max_value; /**< maximum relative timer value */ uint32_t lower_last; /**< timer value at last now() call */ ztimer_now_t checkpoint; /**< cumulated time at last now() call */ #endif #if MODULE_PM_LAYERED || DOXYGEN uint8_t required_pm_mode; /**< min. pm mode required for the clock to run */ #endif }; /** * @brief main ztimer callback handler */ void ztimer_handler(ztimer_clock_t *clock); /* User API */ /** * @brief Set a timer on a clock * * This will place @p timer in the timer targets queue of @p clock. * * @note The memory pointed to by @p timer is not copied and must * remain in scope until the callback is fired or the timer * is removed via @ref ztimer_remove * * @param[in] clock ztimer clock to operate on * @param[in] timer timer entry to set * @param[in] val timer target (relative ticks from now) */ void ztimer_set(ztimer_clock_t *clock, ztimer_t *timer, uint32_t val); /** * @brief Remove a timer from a clock * * This will place @p timer in the timer targets queue for @p clock. * * This function does nothing if @p timer is not found in the timer queue of * @p clock. * * @param[in] clock ztimer clock to operate on * @param[in] timer timer entry to remove */ void ztimer_remove(ztimer_clock_t *clock, ztimer_t *timer); /** * @brief Post a message after a delay * * This function sets a timer that will send a message @p offset ticks * from now. * * @note The memory pointed to by @p timer and @p msg will not be copied, i.e. * `*timer` and `*msg` needs to remain valid until the timer has triggered. * * @param[in] clock ztimer clock to operate on * @param[in] timer ztimer timer struct to use * @param[in] offset ticks from now * @param[in] msg pointer to msg that will be sent * @param[in] target_pid pid the message will be sent to */ void ztimer_set_msg(ztimer_clock_t *clock, ztimer_t *timer, uint32_t offset, msg_t *msg, kernel_pid_t target_pid); /** * @brief receive a message (blocking, with timeout) * * Similar to msg_receive(), but with a timeout parameter. * The function will return after waiting at most @p timeout ticks. * * @note: This might function might leave a message with type MSG_ZTIMER in the * thread's message queue, which must be handled (ignored). * * @param[in] clock ztimer clock to operate on * @param[out] msg pointer to buffer which will be filled if a * message is received * @param[in] timeout relative timeout, in @p clock time units * * @return >=0 if a message was received * @return -ETIME on timeout */ int ztimer_msg_receive_timeout(ztimer_clock_t *clock, msg_t *msg, uint32_t timeout); /* created with dist/tools/define2u16.py */ #define MSG_ZTIMER 0xc83e /**< msg type used by ztimer_msg_receive_timeout */ /** * @brief ztimer_now() for extending timers * * @internal * * @param[in] clock ztimer clock to operate on * @return Current count on the clock @p clock */ ztimer_now_t _ztimer_now_extend(ztimer_clock_t *clock); /** * @brief Get the current time from a clock * * @param[in] clock ztimer clock to operate on * * @return Current count on @p clock */ static inline ztimer_now_t ztimer_now(ztimer_clock_t *clock) { #if MODULE_ZTIMER_NOW64 if (1) { #elif MODULE_ZTIMER_EXTEND if (clock->max_value < UINT32_MAX) { #else if (0) { #endif return _ztimer_now_extend(clock); } else { return clock->ops->now(clock); } } /** * @brief Suspend the calling thread until the time (@p last_wakeup + @p period) * * This function can be used to create periodic wakeups. * * When the function returns, @p last_wakeup is set to * (@p last_wakeup + @p period). * * @c last_wakeup should be set to ztimer_now(@p clock) before first call of the * function. * * If the time (@p last_wakeup + @p period) has already passed, the function * sets @p last_wakeup to @p last_wakeup + @p period and returns immediately. * * @param[in] clock ztimer clock to operate on * @param[in] last_wakeup base time stamp for the wakeup * @param[in] period time in ticks that will be added to @p last_wakeup */ void ztimer_periodic_wakeup(ztimer_clock_t *clock, uint32_t *last_wakeup, uint32_t period); /** * @brief Put the calling thread to sleep for the specified number of ticks * * @param[in] clock ztimer clock to use * @param[in] duration duration of sleep, in @p ztimer time units */ void ztimer_sleep(ztimer_clock_t *clock, uint32_t duration); /** * @brief Set a timer that wakes up a thread * * This function sets a timer that will wake up a thread when the timer has * expired. * * @param[in] clock ztimer clock to operate on * @param[in] timer timer struct to work with. * @param[in] offset clock ticks from now * @param[in] pid pid of the thread that will be woken up */ void ztimer_set_wakeup(ztimer_clock_t *clock, ztimer_t *timer, uint32_t offset, kernel_pid_t pid); /** * @brief Set timeout thread flag after @p timeout * * This function will set THREAD_FLAG_TIMEOUT on the current thread after @p * timeout usec have passed. * * @param[in] clock ztimer clock to operate on * @param[in] timer timer struct to use * @param[in] timeout timeout in ztimer_clock's ticks */ void ztimer_set_timeout_flag(ztimer_clock_t *clock, ztimer_t *timer, uint32_t timeout); /** * @brief Update ztimer clock head list offset * * @internal * * @param[in] clock ztimer clock to work on */ void ztimer_update_head_offset(ztimer_clock_t *clock); /** * @brief Initialize the board-specific default ztimer configuration */ void ztimer_init(void); /** * @brief Initialize possible ztimer extension intermediate timer * * This will basically just set a timer to (clock->max_value >> 1), *if* * max_value is not UINT32_MAX. * * This is called automatically by all ztimer backends and extension modules. * * @internal */ static inline void ztimer_init_extend(ztimer_clock_t *clock) { if (clock->max_value < UINT32_MAX) { clock->ops->set(clock, clock->max_value >> 1); } } /* default ztimer virtual devices */ /** * @brief Default ztimer microsecond clock */ extern ztimer_clock_t *const ZTIMER_USEC; /** * @brief Default ztimer millisecond clock */ extern ztimer_clock_t *const ZTIMER_MSEC; /** * @brief Base ztimer for the microsecond clock (ZTIMER_USEC) * * This ztimer will reference the counter device object at the end of the * chain of ztimer_clock_t for ZTIMER_USEC. * * If the base counter device object's frequency (CONFIG_ZTIMER_USEC_BASE_FREQ) * is not 1MHz then ZTIMER_USEC will be converted on top of this one. Otherwise * they will reference the same ztimer_clock. * * To avoid chained conversions its better to base new ztimer_clock on top of * ZTIMER_USEC_BASE running at CONFIG_ZTIMER_USEC_BASE_FREQ. * */ extern ztimer_clock_t *const ZTIMER_USEC_BASE; /** * @brief Base ztimer for the millisecond clock (ZTIMER_MSEC) * * This ztimer will reference the counter device object at the end of the * chain of ztimer_clock_t for ZTIMER_MSEC. * * If ztimer_periph_rtt is not used then ZTIMER_MSEC_BASE will reference the * same base as ZTIMER_USEC_BASE. * * If the base counter device object's frequency (CONFIG_ZTIMER_MSEC_BASE_FREQ) * is not 1KHz then ZTIMER_MSEC will be converted on top of this one. Otherwise * they will reference the same ztimer_clock. * * To avoid chained conversions its better to base new ztimer_clock on top of * ZTIMER_MSEC_BASE running at CONFIG_ZTIMER_MSEC_BASE_FREQ. * */ extern ztimer_clock_t *const ZTIMER_MSEC_BASE; #ifdef __cplusplus } #endif #endif /* ZTIMER_H */ /** @} */