/* * Copyright (C) 2017 Freie Universität Berlin * 2017 OTA keys S.A. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32f4 * @{ * * @file * @brief Implementation of STM32 clock configuration * * @author Hauke Petersen * @author Vincent Dupont * @} */ #include "cpu.h" #include "stmclk.h" #include "periph_conf.h" /* make sure we have all needed information about the clock configuration */ #ifndef CLOCK_HSE #error "Please provide CLOCK_HSE in your board's perhip_conf.h" #endif #ifndef CLOCK_LSE #error "Please provide CLOCK_LSE in your board's periph_conf.h" #endif /** * @name PLL configuration * @{ */ /* figure out which input to use */ #if (CLOCK_HSE) #define PLL_IN CLOCK_HSE #define PLL_SRC RCC_PLLCFGR_PLLSRC_HSE #else #define PLL_IN (16000000U) /* HSI fixed @ 16MHz */ #define PLL_SRC RCC_PLLCFGR_PLLSRC_HSI #endif #ifndef P /* we fix P to 2 (so the PLL output equals 2 * CLOCK_CORECLOCK) */ #define P (2U) #if ((P != 2) && (P != 4) && (P != 6) && (P != 8)) #error "PLL configuration: PLL P value is invalid" #endif #endif /* P */ /* the recommended input clock for the PLL should be 2MHz */ #define M (PLL_IN / 2000000U) #if ((M < 2) || (M > 63)) #error "PLL configuration: PLL M value is out of range" #endif /* next we multiply the input freq to 2 * CORECLOCK */ #define N (P * CLOCK_CORECLOCK / 2000000U) #if ((N < 50) || (N > 432)) #error "PLL configuration: PLL N value is out of range" #endif /* finally we need to set Q, so that the USB clock is 48MHz */ #define Q ((P * CLOCK_CORECLOCK) / 48000000U) #if ((Q * 48000000U) != (P * CLOCK_CORECLOCK)) #error "PLL configuration: USB frequency is not 48MHz" #endif /* now we get the actual bitfields */ #define PLL_P (((P / 2) - 1) << RCC_PLLCFGR_PLLP_Pos) #define PLL_M (M << RCC_PLLCFGR_PLLM_Pos) #define PLL_N (N << RCC_PLLCFGR_PLLN_Pos) #define PLL_Q (Q << RCC_PLLCFGR_PLLQ_Pos) /** @} */ /** * @name Deduct the needed flash wait states from the core clock frequency * @{ */ #define FLASH_WAITSTATES (CLOCK_CORECLOCK / 30000000U) /** @} */ void stmclk_init_sysclk(void) { /* disable any interrupts. Global interrupts could be enabled if this is * called from some kind of bootloader... */ unsigned is = irq_disable(); RCC->CIR = 0; /* enable HSI clock for the duration of initialization */ stmclk_enable_hsi(); /* use HSI as system clock while we do any further configuration and * configure the AHB and APB clock dividers as configure by the board */ RCC->CFGR = (RCC_CFGR_SW_HSI | CLOCK_AHB_DIV | CLOCK_APB1_DIV | CLOCK_APB2_DIV); while ((RCC->CFGR & RCC_CFGR_SWS_Msk) != RCC_CFGR_SWS_HSI) {} /* we enable I+D cashes, pre-fetch, and we set the actual number of * needed flash wait states */ FLASH->ACR = (FLASH_ACR_ICEN | FLASH_ACR_DCEN | FLASH_ACR_PRFTEN | FLASH_WAITSTATES); /* disable all active clocks except HSI -> resets the clk configuration */ RCC->CR = (RCC_CR_HSION | RCC_CR_HSITRIM_4); /* if configured, we need to enable the HSE clock now */ #if (CLOCK_HSE) RCC->CR |= (RCC_CR_HSEON); while (!(RCC->CR & RCC_CR_HSERDY)) {} #endif /* now we can safely configure and start the PLL */ RCC->PLLCFGR = (PLL_SRC | PLL_M | PLL_N | PLL_P | PLL_Q); RCC->CR |= (RCC_CR_PLLON); while (!(RCC->CR & RCC_CR_PLLRDY)) {} /* now that the PLL is running, we use it as system clock */ RCC->CFGR |= (RCC_CFGR_SW_PLL); while ((RCC->CFGR & RCC_CFGR_SWS_Msk) != RCC_CFGR_SWS_PLL) {} stmclk_disable_hsi(); irq_restore(is); } void stmclk_enable_hsi(void) { RCC->CR |= (RCC_CR_HSION); while (!(RCC->CR & RCC_CR_HSIRDY)) {} } void stmclk_disable_hsi(void) { if ((RCC->CFGR & RCC_CFGR_SWS_Msk) != RCC_CFGR_SWS_HSI) { RCC->CR &= ~(RCC_CR_HSION); } } void stmclk_enable_lfclk(void) { /* configure the low speed clock domain (LSE vs LSI) */ #if CLOCK_LSE /* allow write access to backup domain */ stmclk_bdp_unlock(); /* enable LSE */ RCC->BDCR |= RCC_BDCR_LSEON; while (!(RCC->BDCR & RCC_BDCR_LSERDY)) {} /* disable write access to back domain when done */ stmclk_bdp_lock(); #else RCC->CSR |= RCC_CSR_LSION; while (!(RCC->CSR & RCC_CSR_LSIRDY)) {} #endif } void stmclk_disable_lfclk(void) { #if CLOCK_LSE stmclk_bdp_unlock(); RCC->BDCR &= ~(RCC_BDCR_LSEON); stmclk_bdp_lock(); #else RCC->CSR &= ~(RCC_CSR_LSION); #endif } void stmclk_bdp_unlock(void) { periph_clk_en(APB1, RCC_APB1ENR_PWREN); PWR->CR |= PWR_CR_DBP; } void stmclk_bdp_lock(void) { PWR->CR &= ~(PWR_CR_DBP); periph_clk_dis(APB1, RCC_APB1ENR_PWREN); }