/* * Copyright (C) 2014-2016 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_sam3 * @ingroup drivers_periph_timer * @{ * * @file * @brief Low-level timer driver implementation * * @author Hauke Petersen * * @} */ #include #include #include "board.h" #include "cpu.h" #include "periph/timer.h" #include "periph_conf.h" /** * @brief Memory to store the interrupt context */ static timer_isr_ctx_t isr_ctx[TIMER_NUMOF]; /** * @brief Enable the clock for the selected timer channels */ static inline void clk_en(tim_t tim) { uint8_t id = timer_config[tim].id_ch0; if (id < 32) { PMC->PMC_PCER0 = ((1 << id) | (1 << (id + 1))); } else { id -= 32; PMC->PMC_PCER1 = ((1 << id) | (1 << (id + 1))); } } /** * @brief Get the timer ID from the timer's base address */ static inline Tc *dev(tim_t tim) { return timer_config[tim].dev; } /** * @brief Setup the given timer * * The SAM3X8E has 3 timers build of 3 independent channels. Each of these * channels has 3 capture compare outputs (A-C). * * RIOT uses the 2 of the channels in WAVE mode with the following clock * chaining: * * ---------- ---------- * | | | |-> IRQ-compareA * | TCx[1] | ---- TIOA1 --->| TCx[0] |-> IRQ-compareB * | | | |-> IRQ-compareC * ---------- ---------- * ^ * TIMER_CLOCK1 * * For each timer, channel 1 is used to implement a prescaler. Channel 1 is * driven by the MCK / 2 (42MHz) (TIMER_CLOCK1). */ int timer_init(tim_t tim, uint32_t freq, timer_cb_t cb, void *arg) { /* check if device is valid */ if (tim >= TIMER_NUMOF) { return -1; } /* enable the device clock */ clk_en(tim); /* save callback */ isr_ctx[tim].cb = cb; isr_ctx[tim].arg = arg; /* configure the timer block by connecting TIOA1 to XC0 */ dev(tim)->TC_BMR = TC_BMR_TC0XC0S_TIOA1; /* configure and enable channel 0 to use XC0 as input */ dev(tim)->TC_CHANNEL[0].TC_CMR = (TC_CMR_TCCLKS_XC0 | TC_CMR_WAVE | TC_CMR_EEVT_XC0); dev(tim)->TC_CHANNEL[0].TC_CCR = (TC_CCR_CLKEN | TC_CCR_SWTRG); /* configure channel 1: * - select wave mode * - set input clock to TIMER_CLOCK1 (MCK/2) * - reload on TC_CV == TC_RC * - let TIOA2 signal be toggled when TC_CV == TC_RC */ dev(tim)->TC_CHANNEL[1].TC_CMR = (TC_CMR_TCCLKS_TIMER_CLOCK1 | TC_CMR_WAVE | TC_CMR_WAVSEL_UP_RC | TC_CMR_ACPC_TOGGLE); /* configure the frequency of channel 1 to freq * 4 * * note: as channel 0 is only incremented on rising edges of TIOA1 line and * channel 1 toggles this line on each timer tick, the actual frequency * driving channel 0 is f_ch2 / 2 --> f_ch0/1 = (MCK / 2) / 2 / freq. */ uint32_t tc_rc = (CLOCK_CORECLOCK / 4) / freq; /* the API expects apps to know in advance which frequencies are possible * and only configure with supported frequencies. So aid debugging with * an assert */ assert(tc_rc * freq == CLOCK_CORECLOCK / 4); dev(tim)->TC_CHANNEL[1].TC_RC = tc_rc; /* start channel 1 */ dev(tim)->TC_CHANNEL[1].TC_CCR = (TC_CCR_CLKEN | TC_CCR_SWTRG); /* enable global interrupts for given timer */ NVIC_EnableIRQ(timer_config[tim].id_ch0); return 0; } int timer_set_absolute(tim_t tim, int channel, unsigned int value) { if (channel >= TIMER_CHANNEL_NUMOF) { return -1; } (&dev(tim)->TC_CHANNEL[0].TC_RA)[channel] = value; /* read TC status register to clear any possibly pending * ISR flag (that has not been served yet). * timer_clear() disables the interrupt, but does not clear the flags. * if we don't clear them here, re-enabling the interrupt below * can trigger for the previously disabled timer. */ (void)dev(tim)->TC_CHANNEL[0].TC_SR; dev(tim)->TC_CHANNEL[0].TC_IER = (TC_IER_CPAS << channel); return 0; } int timer_clear(tim_t tim, int channel) { if (channel >= TIMER_CHANNEL_NUMOF) { return -1; } dev(tim)->TC_CHANNEL[0].TC_IDR = (TC_IDR_CPAS << channel); return 0; } unsigned int timer_read(tim_t tim) { return dev(tim)->TC_CHANNEL[0].TC_CV; } void timer_start(tim_t tim) { dev(tim)->TC_CHANNEL[1].TC_CCR = (TC_CCR_CLKEN | TC_CCR_SWTRG); } void timer_stop(tim_t tim) { dev(tim)->TC_CHANNEL[1].TC_CCR = TC_CCR_CLKDIS; } static inline void isr_handler(tim_t tim) { uint32_t status = dev(tim)->TC_CHANNEL[0].TC_SR; for (int i = 0; i < TIMER_CHANNEL_NUMOF; i++) { if (status & (TC_SR_CPAS << i)) { dev(tim)->TC_CHANNEL[0].TC_IDR = (TC_IDR_CPAS << i); isr_ctx[tim].cb(isr_ctx[tim].arg, i); } } cortexm_isr_end(); } #ifdef TIMER_0_ISR void TIMER_0_ISR(void) { isr_handler(0); } #endif #ifdef TIMER_1_ISR void TIMER_1_ISR(void) { isr_handler(1); } #endif #ifdef TIMER_2_ISR void TIMER_2_ISR(void) { isr_handler(2); } #endif