/* * Copyright (C) 2016 Engineering-Spirit * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_stm32f1 * @ingroup drivers_periph_adc * @{ * * @file * @brief Low-level ADC driver implementation * * @author Hauke Petersen * @author Nick van IJzendoorn * * @} */ #include "cpu.h" #include "mutex.h" #include "periph/adc.h" #include "periph_conf.h" /** * @brief Maximum allowed ADC clock speed */ #define MAX_ADC_SPEED (14000000U) /** * @brief Load the ADC configuration */ static const adc_conf_t adc_config[] = ADC_CONFIG; /** * @brief Allocate locks for all three available ADC devices */ static mutex_t locks[] = { #if ADC_DEVS > 1 MUTEX_INIT, #endif #if ADC_DEVS > 2 MUTEX_INIT, #endif MUTEX_INIT }; static inline ADC_TypeDef *dev(adc_t line) { return (ADC_TypeDef *)(ADC1_BASE + (adc_config[line].dev << 8)); } static inline void prep(adc_t line) { mutex_lock(&locks[adc_config[line].dev]); periph_clk_en(APB2, (RCC_APB2ENR_ADC1EN << adc_config[line].dev)); /* enable the ADC module */ dev(line)->CR2 |= ADC_CR2_ADON; /* check if this channel is an internal ADC channel, if so * enable the internal temperature and Vref */ if (adc_config[line].chan == 16 || adc_config[line].chan == 17) { dev(line)->CR2 |= ADC_CR2_TSVREFE; } } static inline void done(adc_t line) { /* disable the internal temperature and Vref */ dev(line)->CR2 &= ~ADC_CR2_TSVREFE; /* disable the ADC module */ dev(line)->CR2 &= ~ADC_CR2_ADON; periph_clk_dis(APB2, (RCC_APB2ENR_ADC1EN << adc_config[line].dev)); mutex_unlock(&locks[adc_config[line].dev]); } int adc_init(adc_t line) { uint32_t clk_div = 2; /* check if the line is valid */ if (line >= ADC_NUMOF) { return -1; } /* lock and power-on the device */ prep(line); /* configure the pin */ if (adc_config[line].pin != GPIO_UNDEF) { gpio_init_analog(adc_config[line].pin); } /* set clock prescaler to get the maximal possible ADC clock value */ for (clk_div = 2; clk_div < 8; clk_div += 2) { if ((CLOCK_CORECLOCK / clk_div) <= MAX_ADC_SPEED) { break; } } RCC->CFGR &= ~(RCC_CFGR_ADCPRE); RCC->CFGR |= ((clk_div / 2) - 1) << 14; /* resets the selected ADC calibration registers */ dev(line)->CR2 |= ADC_CR2_RSTCAL; /* check the status of RSTCAL bit */ while (dev(line)->CR2 & ADC_CR2_RSTCAL) {} /* enable the selected ADC calibration process */ dev(line)->CR2 |= ADC_CR2_CAL; /* wait for the calibration to have finished */ while (dev(line)->CR2 & ADC_CR2_CAL) {} /* set all channels to maximum (239.5) cycles for best accuracy */ dev(line)->SMPR1 |= 0x00ffffff; dev(line)->SMPR2 |= 0x3fffffff; /* we want to sample one channel */ dev(line)->SQR1 = ADC_SQR1_L_0; /* start sampling from software */ dev(line)->CR2 |= ADC_CR2_EXTTRIG | ADC_CR2_EXTSEL; /* check if the internal channels are configured to use ADC1 */ if (adc_config[line].chan == 16 || adc_config[line].chan == 17) { if (dev(line) != ADC1) { return -3; } } /* free the device again */ done(line); return 0; } int32_t adc_sample(adc_t line, adc_res_t res) { int sample; /* check if the linenel is valid */ if (line >= ADC_NUMOF) { return -1; } /* check if resolution is applicable */ if (res != ADC_RES_12BIT) { return -2; } /* lock and power on the ADC device */ prep(line); /* set conversion channel */ dev(line)->SQR3 = adc_config[line].chan; /* start conversion and wait for results */ dev(line)->CR2 |= ADC_CR2_SWSTART; while (!(dev(line)->SR & ADC_SR_EOC)) {} /* finally read sample and reset the STRT bit in the status register */ sample = (int)dev(line)->DR; /* power off and unlock device again */ done(line); return sample; }