/* * Copyright (C) 2014-2016 Freie Universität Berlin * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32f1 * @{ * * @file * @brief Low-level UART driver implementation * * @author Hauke Petersen * @author Thomas Eichinger * * @} */ #include #include "cpu.h" #include "board.h" #include "periph_conf.h" #include "periph/uart.h" #include "periph/gpio.h" #include "sched.h" #include "thread.h" /** * @brief Allocate memory to store the callback functions. */ static uart_isr_ctx_t isr_ctx[UART_NUMOF]; static inline USART_TypeDef *dev(uart_t uart) { return uart_config[uart].dev; } static void clk_en(uart_t uart) { if (uart_config[uart].bus == APB1) { RCC->APB1ENR |= uart_config[uart].rcc_pin; } else { RCC->APB2ENR |= uart_config[uart].rcc_pin; } } int uart_init(uart_t uart, uint32_t baudrate, uart_rx_cb_t rx_cb, void *arg) { uint32_t bus_clk; uint16_t mantissa; uint8_t fraction; /* make sure the given device is valid */ if (uart >= UART_NUMOF) { return -1; } /* save ISR context */ isr_ctx[uart].rx_cb = rx_cb; isr_ctx[uart].arg = arg; /* configure RX and TX pin */ gpio_init(uart_config[uart].rx_pin, GPIO_DIR_IN, GPIO_NOPULL); gpio_init_af(uart_config[uart].tx_pin, GPIO_AF_OUT_PP); /* enable the clock */ clk_en(uart); /* reset UART configuration -> defaults to 8N1 mode */ dev(uart)->CR1 = 0; dev(uart)->CR2 = 0; dev(uart)->CR3 = 0; /* calculate and apply baudrate */ bus_clk = (uart_config[uart].bus == APB1) ? CLOCK_APB1 : CLOCK_APB2; bus_clk /= baudrate; mantissa = (uint16_t)(bus_clk / 16); fraction = (uint8_t)(bus_clk - (mantissa * 16)); dev(uart)->BRR = ((mantissa & 0x0fff) << 4) | (fraction & 0x0f); /* enable the UART's global interrupt and activate it */ NVIC_EnableIRQ(uart_config[uart].irqn); dev(uart)->CR1 = (USART_CR1_UE | USART_CR1_TE | USART_CR1_RE | USART_CR1_RXNEIE); return 0; } void uart_write(uart_t uart, const uint8_t *data, size_t len) { for (size_t i = 0; i < len; i++) { while(!(dev(uart)->SR & USART_SR_TXE)) {} dev(uart)->DR = data[i]; } } static inline void irq_handler(uart_t uart) { uint32_t status = dev(uart)->SR; if (status & USART_SR_RXNE) { char data = (char)dev(uart)->DR; isr_ctx[uart].rx_cb(isr_ctx[uart].arg, data); } if (status & USART_SR_ORE) { /* ORE is cleared by reading SR and DR sequentially */ dev(uart)->DR; } if (sched_context_switch_request) { thread_yield(); } } #ifdef UART_0_ISR void UART_0_ISR(void) { irq_handler(0); } #endif #ifdef UART_1_ISR void UART_1_ISR(void) { irq_handler(1); } #endif #ifdef UART_2_ISR void UART_2_ISR(void) { irq_handler(2); } #endif