#!/usr/bin/env python3 """Generate a binary file from a sample image of the MNIST dataset. Pixel of the sample are stored as float32, images have size 8x8. """ import os import argparse import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn import datasets SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) def main(args): output_path = os.path.join(SCRIPT_DIR, args.output) digits = datasets.load_digits() rnd = 42 _, data, _, _ = train_test_split(digits.data, digits.target, random_state=rnd) data = data[args.index] np.ndarray.tofile(data.astype('float32'), output_path) if args.no_plot is False: plt.gray() plt.imshow(data.reshape(8, 8)) plt.show() if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-i", "--index", type=int, default=0, help="Image index in MNIST test dataset") parser.add_argument("-o", "--output", type=str, default='digit', help="Output filename") parser.add_argument("--no-plot", default=False, action='store_true', help="Disable image display in matplotlib") main(parser.parse_args())