/* * Copyright (C) 2017 Kaspar Schleiser * 2014 FU Berlin * 2018 Inria * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_stm32_common * @ingroup drivers_periph_i2c * @{ * * @file * @brief Low-level I2C driver implementation * * This driver supports the STM32 F4 families. * * @note This implementation only implements the 7-bit addressing mode. * * @author Peter Kietzmann * @author Hauke Petersen * @author Thomas Eichinger * @author Kaspar Schleiser * @author Toon Stegen * @author Vincent Dupont * @author Víctor Ariño * @author Alexandre Abadie * * @} */ #include #include #include "cpu.h" #include "irq.h" #include "mutex.h" #include "pm_layered.h" #include "periph_conf.h" #include "periph/gpio.h" #include "periph/i2c.h" #define ENABLE_DEBUG (0) #include "debug.h" #define I2C_IRQ_PRIO (1) #define I2C_FLAG_READ (I2C_READ) #define I2C_FLAG_WRITE (0) #define TICK_TIMEOUT (0xFFFF) #define ERROR_FLAG (I2C_SR1_AF | I2C_SR1_ARLO | I2C_SR1_BERR) /* static function definitions */ static void _i2c_init(I2C_TypeDef *i2c, uint32_t clk, uint32_t ccr); static inline int _start(I2C_TypeDef *dev, uint8_t address, uint8_t rw_flag, uint8_t flags); static inline void _clear_addr(I2C_TypeDef *dev); static inline int _write(I2C_TypeDef *dev, const uint8_t *data, int length); static inline int _stop(I2C_TypeDef *dev); static inline int _wait_ready(I2C_TypeDef *dev); /** * @brief Array holding one pre-initialized mutex for each I2C device */ static mutex_t locks[I2C_NUMOF]; void i2c_init(i2c_t dev) { assert(dev < I2C_NUMOF); DEBUG("[i2c] init: initializing device\n"); mutex_init(&locks[dev]); I2C_TypeDef *i2c = i2c_config[dev].dev; assert(i2c != NULL); uint32_t ccr; /* read speed configuration */ switch (i2c_config[dev].speed) { case I2C_SPEED_LOW: /* 10Kbit/s */ ccr = i2c_config[dev].clk / 20000; break; case I2C_SPEED_NORMAL: /* 100Kbit/s */ ccr = i2c_config[dev].clk / 200000; break; case I2C_SPEED_FAST: ccr = i2c_config[dev].clk / 800000; break; default: return; } periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask); NVIC_SetPriority(i2c_config[dev].irqn, I2C_IRQ_PRIO); NVIC_EnableIRQ(i2c_config[dev].irqn); /* configure pins */ DEBUG("[i2c] init: configuring pins\n"); gpio_init(i2c_config[dev].scl_pin, GPIO_OD_PU); gpio_init(i2c_config[dev].sda_pin, GPIO_OD_PU); #ifdef CPU_FAM_STM32F1 gpio_init_af(i2c_config[dev].scl_pin, GPIO_AF_OUT_OD); gpio_init_af(i2c_config[dev].sda_pin, GPIO_AF_OUT_OD); #else gpio_init_af(i2c_config[dev].scl_pin, i2c_config[dev].scl_af); gpio_init_af(i2c_config[dev].sda_pin, i2c_config[dev].sda_af); #endif /* configure device */ DEBUG("[i2c] init: configuring device\n"); _i2c_init(i2c, i2c_config[dev].clk, ccr); #if defined(CPU_FAM_STM32F4) /* make sure the analog filters don't hang -> see errata sheet 2.14.7 */ if (i2c->SR2 & I2C_SR2_BUSY) { DEBUG("[i2c] init: line busy after reset, toggle pins now\n"); /* disable peripheral */ i2c->CR1 &= ~I2C_CR1_PE; /* toggle both pins to reset analog filter */ gpio_init(i2c_config[dev].scl_pin, GPIO_OD); gpio_init(i2c_config[dev].sda_pin, GPIO_OD); gpio_set(i2c_config[dev].sda_pin); gpio_set(i2c_config[dev].scl_pin); gpio_clear(i2c_config[dev].sda_pin); gpio_clear(i2c_config[dev].scl_pin); gpio_set(i2c_config[dev].sda_pin); gpio_set(i2c_config[dev].scl_pin); /* reset pins for alternate function */ gpio_init(i2c_config[dev].scl_pin, GPIO_OD_PU); gpio_init(i2c_config[dev].sda_pin, GPIO_OD_PU); gpio_init_af(i2c_config[dev].scl_pin, i2c_config[dev].scl_af); gpio_init_af(i2c_config[dev].sda_pin, i2c_config[dev].sda_af); /* make peripheral soft reset */ i2c->CR1 |= I2C_CR1_SWRST; i2c->CR1 &= ~I2C_CR1_SWRST; /* enable device */ _i2c_init(i2c, i2c_config[dev].clk, ccr); } #endif } static void _i2c_init(I2C_TypeDef *i2c, uint32_t clk, uint32_t ccr) { /* disable device and set ACK bit */ i2c->CR1 = I2C_CR1_ACK; /* configure I2C clock */ i2c->CR2 = (clk / 1000000) | I2C_CR2_ITERREN; i2c->CCR = ccr; i2c->TRISE = (clk / 1000000) + 1; /* configure device */ /* configure device */ i2c->OAR1 |= (1 << 14); /* datasheet: bit 14 should be kept 1 */ i2c->OAR1 &= ~I2C_OAR1_ADDMODE; /* make sure we are in 7-bit address mode */ /* Clear flags */ i2c->SR1 &= ~ERROR_FLAG; /* enable device */ i2c->CR1 |= I2C_CR1_PE; } int i2c_acquire(i2c_t dev) { assert(dev < I2C_NUMOF); mutex_lock(&locks[dev]); #ifdef STM32_PM_STOP /* block STOP mode */ pm_block(STM32_PM_STOP); #endif periph_clk_en(i2c_config[dev].bus, i2c_config[dev].rcc_mask); return 0; } int i2c_release(i2c_t dev) { assert(dev < I2C_NUMOF); uint16_t tick = TICK_TIMEOUT; while ((i2c_config[dev].dev->SR2 & I2C_SR2_BUSY) && tick--) {} periph_clk_dis(i2c_config[dev].bus, i2c_config[dev].rcc_mask); #ifdef STM32_PM_STOP /* unblock STOP mode */ pm_unblock(STM32_PM_STOP); #endif mutex_unlock(&locks[dev]); return 0; } int i2c_read_bytes(i2c_t dev, uint16_t address, void *data, size_t length, uint8_t flags) { assert(dev < I2C_NUMOF); if (flags & I2C_ADDR10) { return -EOPNOTSUPP; } uint16_t tick = TICK_TIMEOUT; size_t n = length; char *in = (char *)data; I2C_TypeDef *i2c = i2c_config[dev].dev; assert(i2c != NULL); int ret = 0; if (!(flags & I2C_NOSTART)) { DEBUG("[i2c] read_bytes: Send Slave address and wait for ADDR == 1\n"); ret = _start(i2c, address, I2C_FLAG_READ, flags); if (ret < 0) { return ret; } if (length == 1 && !(flags & I2C_NOSTOP)) { DEBUG("[i2c] read_bytes: Set ACK = 0\n"); i2c->CR1 &= ~(I2C_CR1_ACK); } else { i2c->CR1 |= I2C_CR1_ACK; } _clear_addr(i2c); } else { if (length == 1 && !(flags & I2C_NOSTOP)) { DEBUG("[i2c] read_bytes: Set ACK = 0\n"); i2c->CR1 &= ~(I2C_CR1_ACK); } else { i2c->CR1 |= I2C_CR1_ACK; } } while (n--) { /* wait for reception to complete */ while (!(i2c->SR1 & I2C_SR1_RXNE) && tick--) { if ((i2c->SR1 & ERROR_FLAG) || !tick) { return -ETIMEDOUT; } } if (n == 1 && !(flags & I2C_NOSTOP)) { /* disable ACK */ i2c->CR1 &= ~(I2C_CR1_ACK); } /* read byte */ *(in++) = i2c->DR; } if (!(flags & I2C_NOSTOP)) { /* set STOP */ i2c->CR1 |= (I2C_CR1_STOP); tick = TICK_TIMEOUT; while ((i2c->CR1 & I2C_CR1_STOP) && tick--) { if (!tick) { return -ETIMEDOUT; } } } return ret; } int i2c_read_regs(i2c_t dev, uint16_t address, uint16_t reg, void *data, size_t length, uint8_t flags) { assert(dev < I2C_NUMOF); uint16_t tick = TICK_TIMEOUT; I2C_TypeDef *i2c = i2c_config[dev].dev; assert(i2c != NULL); if ((flags & I2C_REG16) || (flags & I2C_ADDR10)) { return -EOPNOTSUPP; } int ret = _wait_ready(i2c); if (ret < 0) { return ret; } if (!(flags & I2C_NOSTART)) { /* send start condition and slave address */ DEBUG("[i2c] read_regs: Send slave address and clear ADDR flag\n"); ret = _start(i2c, address, I2C_FLAG_WRITE, flags); if (ret < 0) { return ret; } } DEBUG("[i2c] read_regs: Write reg into DR\n"); _clear_addr(i2c); while (!(i2c->SR1 & I2C_SR1_TXE) && tick--) { if ((i2c->SR1 & ERROR_FLAG) || !tick) { return -ETIMEDOUT; } } i2c->DR = reg; tick = TICK_TIMEOUT; while (!(i2c->SR1 & I2C_SR1_TXE) && tick--) { if ((i2c->SR1 & ERROR_FLAG) || !tick) { return -ETIMEDOUT; } } DEBUG("[i2c] read_regs: Now start a read transaction\n"); return i2c_read_bytes(dev, address, data, length, flags); } int i2c_write_bytes(i2c_t dev, uint16_t address, const void *data, size_t length, uint8_t flags) { assert(dev < I2C_NUMOF); if (flags & I2C_ADDR10) { return -EOPNOTSUPP; } I2C_TypeDef *i2c = i2c_config[dev].dev; assert(i2c != NULL); int ret = _wait_ready(i2c); if (ret != 0) { return ret; } if (!(flags & I2C_NOSTART)) { /* start transmission and send slave address */ DEBUG("[i2c] write_bytes: sending start sequence\n"); ret = _start(i2c, address, I2C_FLAG_WRITE, flags); if (ret < 0) { return ret; } } _clear_addr(i2c); /* send out data bytes */ ret = _write(i2c, data, length); if (ret < 0) { return ret; } if (!(flags & I2C_NOSTOP)) { /* end transmission */ DEBUG("[i2c] write_bytes: Ending transmission\n"); ret = _stop(i2c); if (ret < 0) { return ret; } DEBUG("[i2c] write_bytes: STOP condition was send out\n"); } return ret; } int i2c_write_regs(i2c_t dev, uint16_t address, uint16_t reg, const void *data, size_t length, uint8_t flags) { assert(dev < I2C_NUMOF); I2C_TypeDef *i2c = i2c_config[dev].dev; assert(i2c != NULL); if ((flags & I2C_REG16) || (flags & I2C_ADDR10)) { return -EOPNOTSUPP; } int ret = _wait_ready(i2c); if (ret != 0) { return ret; } if (!(flags & I2C_NOSTART)) { /* start transmission and send slave address */ ret = _start(i2c, address, I2C_FLAG_WRITE, flags); if (ret < 0) { return ret; } } _clear_addr(i2c); /* send register address and wait for complete transfer to be finished*/ ret = _write(i2c, (uint8_t *)®, 1); if (ret < 0) { return ret; } /* write data to register */ ret = _write(i2c, data, length); if (ret < 0) { return ret; } if (!(flags & I2C_NOSTOP)) { /* finish transfer */ ret = _stop(i2c); if (ret < 0) { return ret; } } return ret; } static int _start(I2C_TypeDef *i2c, uint8_t address, uint8_t rw_flag, uint8_t flags) { (void)flags; /* Clear flags */ i2c->SR1 &= ~ERROR_FLAG; /* generate start condition */ i2c->CR1 |= I2C_CR1_START; /* Wait for SB flag to be set */ while (!(i2c->SR1 & I2C_SR1_SB)) {} /* send address and read/write flag */ i2c->DR = (address << 1) | rw_flag; uint16_t tick = TICK_TIMEOUT; /* Wait for ADDR flag to be set */ while (!(i2c->SR1 & I2C_SR1_ADDR) && tick--) { if ((i2c->SR1 & ERROR_FLAG) || !tick) { i2c->CR1 |= I2C_CR1_STOP; return -ETIMEDOUT; } } return 0; } static inline void _clear_addr(I2C_TypeDef *i2c) { i2c->SR1; i2c->SR2; } static inline int _write(I2C_TypeDef *i2c, const uint8_t *data, int length) { DEBUG("[i2c] write: Looping through bytes\n"); for (int i = 0; i < length; i++) { /* write data to data register */ i2c->DR = data[i]; DEBUG("[i2c] write: Written %i byte to data reg, now waiting for DR " "to be empty again\n", i); uint16_t tick = TICK_TIMEOUT; /* wait for transfer to finish */ while (!(i2c->SR1 & I2C_SR1_TXE) && tick--) { if ((i2c->SR1 & ERROR_FLAG) || !tick) { return -ETIMEDOUT; } } DEBUG("[i2c] write: DR is now empty again\n"); } return 0; } static inline int _stop(I2C_TypeDef *i2c) { uint16_t tick = TICK_TIMEOUT; /* make sure last byte was send */ DEBUG("[i2c] write: Wait if last byte hasn't been sent\n"); while (!(i2c->SR1 & I2C_SR1_BTF) && tick--) { if ((i2c->SR1 & ERROR_FLAG) || !tick) { return -ETIMEDOUT; } } /* send STOP condition */ i2c->CR1 |= I2C_CR1_STOP; return 0; } static inline int _wait_ready(I2C_TypeDef *i2c) { /* wait for device to be ready */ DEBUG("[i2c] wait_ready: Wait for device to be ready\n"); uint16_t tick = TICK_TIMEOUT; while ((i2c->SR2 & I2C_SR2_BUSY) && tick--) { if (!tick) { DEBUG("[i2c] wait_ready: timeout\n"); return -ETIMEDOUT; } } return 0; } static inline void irq_handler(i2c_t dev) { assert(dev < I2C_NUMOF); I2C_TypeDef *i2c = i2c_config[dev].dev; assert(i2c != NULL); unsigned state = i2c->SR1; DEBUG("\n\n### I2C ERROR OCCURED ###\n"); DEBUG("status: %08x\n", state); if (state & I2C_SR1_OVR) { DEBUG("OVR\n"); } if (state & I2C_SR1_AF) { DEBUG("AF\n"); } if (state & I2C_SR1_ARLO) { DEBUG("ARLO\n"); } if (state & I2C_SR1_BERR) { DEBUG("BERR\n"); } if (state & I2C_SR1_PECERR) { DEBUG("PECERR\n"); } if (state & I2C_SR1_TIMEOUT) { DEBUG("TIMEOUT\n"); } if (state & I2C_SR1_SMBALERT) { DEBUG("SMBALERT\n"); } core_panic(PANIC_GENERAL_ERROR, "I2C FAULT"); } #if I2C_0_ISR void I2C_0_ISR(void) { irq_handler(I2C_DEV(0)); } #endif /* I2C_0_ISR */ #if I2C_1_ISR void I2C_1_ISR(void) { irq_handler(I2C_DEV(1)); } #endif /* I2C_1_ISR */