/* * Copyright (C) 2013 Freie Universität Berlin, Computer Systems & Telematics * * This source code is licensed under the LGPLv2 license, * See the file LICENSE for more details. */ /** * @ingroup sys_crypto * @{ * * @file skipjack.c * @brief implementation of the SkipJack Cipher-Algorithm * * @author Freie Universitaet Berlin, Computer Systems & Telematics * @author Nicolai Schmittberger * @author Zakaria Kasmi * @author Naveen Sastry * * @} */ /* * From the NIST description of SkipJack. */ // our context: we just expand the key to 20 bytes. // // we have two options for the expansion: // 1. no expansion. advantage: 10byte context. disadvantage: mucks up // the G box code with ifs / mods. Alternatively adds lots of code and // muckiness. // 2. expand key to 128 bytes. Makes G boxes easy to write, and minimal // code expansion. disadvantage: wasted memory // 3. expand key to 20 bytes. G boxes still simple, the encode and decode // functions are a little more complicated, but still more or less // managable. this is what we've implemented. #include #include #include #include #include #include "crypto/ciphers.h" #include "crypto/skipjack.h" /** * @brief Define a fixed block size of 8 bytes */ #define BLOCK_SIZE (8U) /** * @brief Interface to the skipjack cipher */ block_cipher_interface_t skipjack_interface = { "SkipJack", skipjack_init, skipjack_encrypt, skipjack_decrypt, skipjack_setup_key, skipjack_get_preferred_block_size }; // F-BOX // It can live in either RAM (faster access) or program memory (save ram, // but slower access). The type CRYPTO_TABLE_TYPE, defined in crypto.h // defines where we drop the table and how we access it. This is necessary // to compile for the PC target since it doesn't support tables in // program memory the same way. static const uint8_t SJ_F[] /*__attribute__((C))*/ = { 0xA3, 0xD7, 0x09, 0x83, 0xF8, 0x48, 0xF6, 0xF4, 0xB3, 0x21, 0x15, 0x78, 0x99, 0xB1, 0xAF, 0xF9, 0xE7, 0x2D, 0x4D, 0x8A, 0xCE, 0x4C, 0xCA, 0x2E, 0x52, 0x95, 0xD9, 0x1E, 0x4E, 0x38, 0x44, 0x28, 0x0A, 0xDF, 0x02, 0xA0, 0x17, 0xF1, 0x60, 0x68, 0x12, 0xB7, 0x7A, 0xC3, 0xE9, 0xFA, 0x3D, 0x53, 0x96, 0x84, 0x6B, 0xBA, 0xF2, 0x63, 0x9A, 0x19, 0x7C, 0xAE, 0xE5, 0xF5, 0xF7, 0x16, 0x6A, 0xA2, 0x39, 0xB6, 0x7B, 0x0F, 0xC1, 0x93, 0x81, 0x1B, 0xEE, 0xB4, 0x1A, 0xEA, 0xD0, 0x91, 0x2F, 0xB8, 0x55, 0xB9, 0xDA, 0x85, 0x3F, 0x41, 0xBF, 0xE0, 0x5A, 0x58, 0x80, 0x5F, 0x66, 0x0B, 0xD8, 0x90, 0x35, 0xD5, 0xC0, 0xA7, 0x33, 0x06, 0x65, 0x69, 0x45, 0x00, 0x94, 0x56, 0x6D, 0x98, 0x9B, 0x76, 0x97, 0xFC, 0xB2, 0xC2, 0xB0, 0xFE, 0xDB, 0x20, 0xE1, 0xEB, 0xD6, 0xE4, 0xDD, 0x47, 0x4A, 0x1D, 0x42, 0xED, 0x9E, 0x6E, 0x49, 0x3C, 0xCD, 0x43, 0x27, 0xD2, 0x07, 0xD4, 0xDE, 0xC7, 0x67, 0x18, 0x89, 0xCB, 0x30, 0x1F, 0x8D, 0xC6, 0x8F, 0xAA, 0xC8, 0x74, 0xDC, 0xC9, 0x5D, 0x5C, 0x31, 0xA4, 0x70, 0x88, 0x61, 0x2C, 0x9F, 0x0D, 0x2B, 0x87, 0x50, 0x82, 0x54, 0x64, 0x26, 0x7D, 0x03, 0x40, 0x34, 0x4B, 0x1C, 0x73, 0xD1, 0xC4, 0xFD, 0x3B, 0xCC, 0xFB, 0x7F, 0xAB, 0xE6, 0x3E, 0x5B, 0xA5, 0xAD, 0x04, 0x23, 0x9C, 0x14, 0x51, 0x22, 0xF0, 0x29, 0x79, 0x71, 0x7E, 0xFF, 0x8C, 0x0E, 0xE2, 0x0C, 0xEF, 0xBC, 0x72, 0x75, 0x6F, 0x37, 0xA1, 0xEC, 0xD3, 0x8E, 0x62, 0x8B, 0x86, 0x10, 0xE8, 0x08, 0x77, 0x11, 0xBE, 0x92, 0x4F, 0x24, 0xC5, 0x32, 0x36, 0x9D, 0xCF, 0xF3, 0xA6, 0xBB, 0xAC, 0x5E, 0x6C, 0xA9, 0x13, 0x57, 0x25, 0xB5, 0xE3, 0xBD, 0xA8, 0x3A, 0x01, 0x05, 0x59, 0x2A, 0x46 }; int skipjack_init(cipher_context_t *context, uint8_t blockSize, uint8_t keySize, uint8_t *key) { // 8 byte blocks only if (blockSize != BLOCK_SIZE) { return 0; } return skipjack_setup_key(context, key, keySize); } /** * @brief convert 2x uint8_t to uint16_t * * @param c pointer to the 2x uint8_t input * @param s pointer to the resulting uint16_t * */ static void c2sM(uint8_t *c, uint16_t *s) { memcpy(s, c, sizeof(uint16_t)); return; } /** * @brief convert one uint16_t to 2x uint8_t * * @param s pointer to the uint16_t input * @param c pointer to the first resulting uint8_ts */ static void s2cM(uint16_t s, uint8_t *c) { memcpy(c, &s, sizeof(uint16_t)); return; } int skipjack_encrypt(cipher_context_t *context, uint8_t *plainBlock, uint8_t *cipherBlock) { // prologue 10 pushs = 20 cycles /*register*/ uint8_t counter = 1; /*register*/ uint8_t *skey = ((skipjack_context_t *)context->context)->skey; /*register*/ uint16_t w1, w2, w3, w4, tmp; /*register*/ uint8_t bLeft, bRight; //dumpBuffer("SkipJack.encrypt: plainBlock", plainBlock, 8); c2sM(plainBlock, &w1); plainBlock += 2; c2sM(plainBlock, &w2); plainBlock += 2; c2sM(plainBlock, &w3); plainBlock += 2; c2sM(plainBlock, &w4); plainBlock += 2; /* * code if we had expanded key to 128 bytes. this is what the code below * does, but after every 5 operations, it resets the where we are * in the key back to the beginning of the skey. so our loops end up * looking a little funny. * * while (counter < 9) * RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); * while (counter < 17) * RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); * while (counter < 25) * RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); * while (counter < 33) * RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); */ while (counter < 6) { // 5x RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } skey = ((skipjack_context_t *)context->context)->skey; while (counter < 9) { // 3x RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } while (counter < 11) { // 2x RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } skey = ((skipjack_context_t *)context->context)->skey; while (counter < 16) { // 5x RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } skey = ((skipjack_context_t *)context->context)->skey; // 1x RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); while (counter < 21) { // 4x RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } skey = ((skipjack_context_t *)context->context)->skey; while (counter < 25) { // 4x RULE_A(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } // 1x RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); skey = ((skipjack_context_t *)context->context)->skey; while (counter < 31) { // 5x RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } skey = ((skipjack_context_t *)context->context)->skey; while (counter < 33) { // 2x RULE_B(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } s2cM(w1, cipherBlock); cipherBlock += 2; s2cM(w2, cipherBlock); cipherBlock += 2; s2cM(w3, cipherBlock); cipherBlock += 2; s2cM(w4, cipherBlock); cipherBlock += 2; return 1; } int skipjack_decrypt(cipher_context_t *context, uint8_t *cipherBlock, uint8_t *plainBlock) { /*register*/ uint8_t counter = 32; /*register*/ uint8_t *skey = ((skipjack_context_t *)context->context)->skey + 4; /*register*/ uint16_t w1, w2, w3, w4, tmp; /*register*/ uint8_t bLeft, bRight; //dumpBuffer("SkipJack.decrypt: cipherBlock", cipherBlock, 8); c2sM(cipherBlock, &w1); cipherBlock += 2; c2sM(cipherBlock, &w2); cipherBlock += 2; c2sM(cipherBlock, &w3); cipherBlock += 2; c2sM(cipherBlock, &w4); /* // code if we had expanded key to 128 bytes. this is what the code below // does, but after every 5 operations, it resets the where we are // in the key back to the beginning of the skey. so our loops end up // looking a little funny. while (counter > 24) RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); while (counter > 16) RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); while (counter > 8) RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); while (counter > 0) RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight ); */ while (counter > 30) { //2x RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } skey = ((skipjack_context_t *)context->context)->skey + 16; while (counter > 25) { //5x RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } skey = ((skipjack_context_t *)context->context)->skey + 16; //1x RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); while (counter > 20) { //4x RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } skey = ((skipjack_context_t *)context->context)->skey + 16; while (counter > 16) { //4x RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } //1x RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); skey = ((skipjack_context_t *)context->context)->skey + 16; while (counter > 10) { //5x RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } skey = ((skipjack_context_t *)context->context)->skey + 16; while (counter > 8) { // 2x RULE_B_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } while (counter > 5) { // 3x RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } skey = ((skipjack_context_t *)context->context)->skey + 16; while (counter > 0) { // 5x RULE_A_INV(skey, w1, w2, w3, w4, counter, tmp, bLeft, bRight); } s2cM(w1, plainBlock); plainBlock += 2; s2cM(w2, plainBlock); plainBlock += 2; s2cM(w3, plainBlock); plainBlock += 2; s2cM(w4, plainBlock); return 1; } int skipjack_setup_key(cipher_context_t *context, uint8_t *key, uint8_t keysize) { int i = 0; uint8_t *skey = ((skipjack_context_t *)context->context)->skey; // for keys which are smaller than 160 bits, concatenate until they reach // 160 bits in size. Note that key expansion is just concatenation. if (keysize < CIPHERS_KEYSIZE) { //fill up by concatenating key to as long as needed for (i = 0; i < CIPHERS_KEYSIZE; i++) { skey[i] = key[(i % keysize)]; } } else { for (i = 0; i < CIPHERS_KEYSIZE; i++) { skey[i] = key[i]; } } return 1; } uint8_t skipjack_get_preferred_block_size() { return BLOCK_SIZE; }