/* * Copyright (C) 2015 Kaspar Schleiser * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup sys_fmt * @{ * * @file * @brief String formatting library implementation * * @author Kaspar Schleiser * * @} */ #include #include #include #include #include #if defined(__WITH_AVRLIBC__) || defined(__mips__) #include /* for fwrite() */ #else /* work around broken sys/posix/unistd.h */ ssize_t write(int fildes, const void *buf, size_t nbyte); #endif #include "fmt.h" static const char _hex_chars[16] = "0123456789ABCDEF"; static const uint32_t _tenmap[] = { 0, 10LU, 100LU, 1000LU, 10000LU, 100000LU, 1000000LU, 10000000LU, }; #define TENMAP_SIZE (sizeof(_tenmap) / sizeof(_tenmap[0])) static inline int _is_digit(char c) { return (c >= '0' && c <= '9'); } size_t fmt_byte_hex(char *out, uint8_t byte) { if (out) { *out++ = _hex_chars[byte >> 4]; *out = _hex_chars[byte & 0x0F]; } return 2; } size_t fmt_bytes_hex(char *out, const uint8_t *ptr, size_t n) { size_t len = n * 2; if (out) { while (n--) { out += fmt_byte_hex(out, *ptr++); } } return len; } size_t fmt_strlen(const char *str) { const char *tmp = str; while(*tmp) { tmp++; } return (tmp - str); } size_t fmt_str(char *out, const char *str) { int len = 0; if (!out) { len = fmt_strlen(str); } else { char c; while ((c = *str++)) { *out++ = c; len++; } } return len; } size_t fmt_bytes_hex_reverse(char *out, const uint8_t *ptr, size_t n) { size_t i = n; while (i--) { out += fmt_byte_hex(out, ptr[i]); } return (n<<1); } static uint8_t _byte_mod25(uint8_t x) { for (unsigned divisor = 200; divisor >= 25; divisor >>= 1) { if (x >= divisor) { x -= divisor; } } return x; } static uint8_t _hex_nib(uint8_t nib) { return _byte_mod25((nib & 0x1f) + 9); } size_t fmt_hex_bytes(uint8_t *out, const char *hex) { size_t len = fmt_strlen(hex); if (len & 1) { out = NULL; return 0; } size_t final_len = len >> 1; for (size_t i = 0, j = 0; j < final_len; i += 2, j++) { out[j] = (_hex_nib(hex[i]) << 4) | _hex_nib(hex[i+1]); } return final_len; } size_t fmt_u32_hex(char *out, uint32_t val) { return fmt_bytes_hex_reverse(out, (uint8_t*) &val, 4); } size_t fmt_u64_hex(char *out, uint64_t val) { return fmt_bytes_hex_reverse(out, (uint8_t*) &val, 8); } size_t fmt_u64_dec(char *out, uint64_t val) { uint32_t d[5]; uint32_t q; size_t len = 0; d[0] = val & 0xFFFF; d[1] = (val>>16) & 0xFFFF; d[2] = (val>>32) & 0xFFFF; d[3] = (val>>48) & 0xFFFF; d[0] = 656 * d[3] + 7296 * d[2] + 5536 * d[1] + d[0]; q = d[0] / 10000; d[0] = d[0] % 10000; d[1] = q + 7671 * d[3] + 9496 * d[2] + 6 * d[1]; q = d[1] / 10000; d[1] = d[1] % 10000; d[2] = q + 4749 * d[3] + 42 * d[2]; q = d[2] / 10000; d[2] = d[2] % 10000; d[3] = q + 281 * d[3]; q = d[3] / 10000; d[3] = d[3] % 10000; d[4] = q; int first = 4; while (!d[first] && first) { first--; } len = fmt_u32_dec(out, d[first]); int total_len = len + (first * 4); if (out) { out += len; memset(out, '0', total_len - len); while(first) { first--; if (d[first]) { size_t tmp = fmt_u32_dec(NULL, d[first]); fmt_u32_dec(out+(4-tmp), d[first]); } out += 4; } } return total_len; } size_t fmt_u32_dec(char *out, uint32_t val) { size_t len = 1; /* count needed characters */ /* avoid multiply overflow: uint32_t max len = 10 digits */ if (val >= 1000000000ul) { len = 10; } else { for (uint32_t tmp = 10; tmp <= val; len++) { tmp *= 10; } } if (out) { char *ptr = out + len; do { *--ptr = (val % 10) + '0'; } while ((val /= 10)); } return len; } size_t fmt_u16_dec(char *out, uint16_t val) { return fmt_u32_dec(out, val); } size_t fmt_s32_dec(char *out, int32_t val) { unsigned negative = (val < 0); if (negative) { if (out) { *out++ = '-'; } val = -val; } return fmt_u32_dec(out, val) + negative; } size_t fmt_s16_dec(char *out, int16_t val) { return fmt_s32_dec(out, val); } size_t fmt_s16_dfp(char *out, int16_t val, unsigned fp_digits) { return fmt_s32_dfp(out, val, fp_digits); } size_t fmt_s32_dfp(char *out, int32_t val, unsigned fp_digits) { assert(fp_digits < TENMAP_SIZE); int32_t absolute, divider; unsigned div_len, len, pos = 0; char tmp[9]; if (fp_digits == 0) { return fmt_s32_dec(out, val); } if (val < 0) { if (out) { out[pos++] = '-'; } val = -val; } uint32_t e = _tenmap[fp_digits]; absolute = (val / e); divider = val - (absolute * e); pos += fmt_s32_dec(&out[pos], absolute); if (!out) { return pos + 1 + fp_digits; /* abs len + decimal point + divider */ } out[pos++] = '.'; len = pos + fp_digits; div_len = fmt_s32_dec(tmp, divider); while (pos < (len - div_len)) { out[pos++] = '0'; } for (size_t i = 0; i < div_len; i++) { out[pos++] = tmp[i]; } return pos; } /* this is very probably not the most efficient implementation, as it at least * pulls in floating point math. But it works, and it's always nice to have * low hanging fruits when optimizing. (Kaspar) */ size_t fmt_float(char *out, float f, unsigned precision) { assert(precision < TENMAP_SIZE); unsigned negative = (f < 0); uint32_t integer; if (negative) { f = -f; } integer = (uint32_t) f; f -= integer; uint32_t fraction = f * _tenmap[precision]; if (negative && out) { *out++ = '-'; } size_t res = fmt_u32_dec(out, integer); if (precision && fraction) { if (out) { out += res; *out++ = '.'; size_t tmp = fmt_u32_dec(out, fraction); fmt_lpad(out, tmp, precision, '0'); } res += (1 + precision); } res += negative; return res; } size_t fmt_lpad(char *out, size_t in_len, size_t pad_len, char pad_char) { if (in_len >= pad_len) { return in_len; } if (out) { size_t n = pad_len - in_len; if (FMT_USE_MEMMOVE) { memmove(out + n, out, in_len); memset(out, pad_char, n); } else { char *pos = out + pad_len - 1; out += in_len -1; while(in_len--) { *pos-- = *out--; } while (n--) { *pos-- = pad_char; } } } return pad_len; } uint32_t scn_u32_dec(const char *str, size_t n) { uint32_t res = 0; while(n--) { char c = *str++; if (!_is_digit(c)) { break; } else { res *= 10; res += (c - '0'); } } return res; } void print(const char *s, size_t n) { #ifdef __WITH_AVRLIBC__ /* AVR's libc doesn't offer write(), so use fwrite() instead */ fwrite(s, n, 1, stdout); #else while (n > 0) { ssize_t written = write(STDOUT_FILENO, s, n); if (written < 0) { break; } n -= written; s += written; } #endif /* __WITH_AVRLIBC__ */ } void print_u32_dec(uint32_t val) { char buf[10]; size_t len = fmt_u32_dec(buf, val); print(buf, len); } void print_s32_dec(int32_t val) { char buf[11]; size_t len = fmt_s32_dec(buf, val); print(buf, len); } void print_byte_hex(uint8_t byte) { char buf[2]; fmt_byte_hex(buf, byte); print(buf, sizeof(buf)); } void print_u32_hex(uint32_t val) { char buf[8]; fmt_u32_hex(buf, val); print(buf, sizeof(buf)); } void print_u64_hex(uint64_t val) { print_u32_hex(val>>32); print_u32_hex(val); } void print_u64_dec(uint64_t val) { char buf[18]; size_t len = fmt_u64_dec(buf, val); print(buf, len); } void print_float(float f, unsigned precision) { char buf[19]; size_t len = fmt_float(buf, f, precision); print(buf, len); } void print_str(const char* str) { print(str, fmt_strlen(str)); }