/* * Copyright (C) 2014-2016 Freie Universität Berlin * Copyright (C) 2020 Inria * Copyright (C) 2020 Koen Zandberg * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_nrf5x_common * @ingroup drivers_periph_spi * @{ * * @file * @brief Low-level SPI driver implementation based on the SPIM peripheral * * @author Hauke Petersen * @author Frank Holtz * @author Jan Wagner * @author Koen Zandberg * * @} */ #include #include "cpu.h" #include "mutex.h" #include "periph/spi.h" #include "periph/gpio.h" #include "periph_cpu.h" #include #define RAM_MASK (0x20000000) /** * @brief array holding one pre-initialized mutex for each SPI device */ static mutex_t locks[SPI_NUMOF]; /** * @brief array with a busy mutex for each SPI device, used to block the * thread until the transfer is done */ static mutex_t busy[SPI_NUMOF]; static uint8_t _mbuf[SPI_NUMOF][CONFIG_SPI_MBUF_SIZE]; static void spi_isr_handler(void *arg); static inline NRF_SPIM_Type *dev(spi_t bus) { return (NRF_SPIM_Type *)spi_config[bus].dev; } static inline bool _in_ram(const uint8_t *data) { return ((uint32_t)data & RAM_MASK); } #ifdef ERRATA_SPI_SINGLE_BYTE_WORKAROUND void spi_gpio_handler(void *arg) { spi_t bus = (spi_t)(uintptr_t)arg; /** * Immediately disable the IRQ, we only care about one PPI event per * transfer */ gpio_irq_disable(spi_config[bus].sclk); } #endif /** * @brief Work-around for transmitting 1 byte with SPIM on the nrf52832. * @warning Must not be used when transmitting multiple bytes. * @warning After this workaround is used, the user must reset the PPI channel * and the GPIOTE channel before attempting to transmit multiple bytes. * * @param bus The SPI instance that is in use. */ static void _setup_workaround_for_ftpan_58(spi_t bus) { #ifdef ERRATA_SPI_SINGLE_BYTE_WORKAROUND gpio_init_int(spi_config[bus].sclk, GPIO_OUT, GPIO_BOTH, spi_gpio_handler, (void *)(uintptr_t)bus); gpio_irq_disable(spi_config[bus].sclk); uint8_t channel = gpio_int_get_exti(spi_config[bus].sclk); assert(channel != 0xff); // Stop the spim instance when SCK toggles. NRF_PPI->CH[spi_config[bus].ppi].EEP = (uint32_t)&NRF_GPIOTE->EVENTS_IN[channel]; NRF_PPI->CH[spi_config[bus].ppi].TEP = (uint32_t)&dev(bus)->TASKS_STOP; #else (void)bus; #endif } static void _enable_workaround(spi_t bus) { #ifdef ERRATA_SPI_SINGLE_BYTE_WORKAROUND /** * The spim instance cannot be stopped mid-byte, so it will finish * transmitting the first byte and then stop. Effectively ensuring * that only 1 byte is transmitted. */ NRF_PPI->CHENSET = 1U << spi_config[bus].ppi; gpio_irq_enable(spi_config[bus].sclk); #else (void)bus; #endif } static void _clear_workaround(spi_t bus) { #ifdef ERRATA_SPI_SINGLE_BYTE_WORKAROUND NRF_PPI->CHENCLR = 1U << spi_config[bus].ppi; #else (void)bus; #endif } void spi_init(spi_t bus) { assert(bus < SPI_NUMOF); /* initialize mutex */ mutex_init(&locks[bus]); mutex_init(&busy[bus]); mutex_lock(&busy[bus]); /* initialize pins */ spi_init_pins(bus); } void spi_init_pins(spi_t bus) { gpio_init(spi_config[bus].sclk, GPIO_OUT); gpio_init(spi_config[bus].mosi, GPIO_OUT); gpio_init(spi_config[bus].miso, GPIO_IN); /* select pins for the SPI device */ SPI_SCKSEL = spi_config[bus].sclk; SPI_MOSISEL = spi_config[bus].mosi; SPI_MISOSEL = spi_config[bus].miso; _setup_workaround_for_ftpan_58(bus); spi_twi_irq_register_spi(dev(bus), spi_isr_handler, (void *)(uintptr_t)bus); } void spi_acquire(spi_t bus, spi_cs_t cs, spi_mode_t mode, spi_clk_t clk) { (void)cs; assert((unsigned)bus < SPI_NUMOF); mutex_lock(&locks[bus]); /* configure bus */ dev(bus)->CONFIG = mode; dev(bus)->FREQUENCY = clk; /* enable the bus */ dev(bus)->ENABLE = SPIM_ENABLE_ENABLE_Enabled; } void spi_release(spi_t bus) { /* power off everything */ dev(bus)->ENABLE = 0; mutex_unlock(&locks[bus]); } static size_t _transfer(spi_t bus, const uint8_t *out_buf, uint8_t *in_buf, size_t remaining_len) { uint8_t transfer_len = remaining_len > UINT8_MAX ? UINT8_MAX : remaining_len; const uint8_t *out_mbuf = out_buf; /** * Copy the out buffer in case it resides in flash, EasyDMA only works from * RAM */ if (out_buf && !_in_ram(out_buf)) { /* The SPI MBUF can be smaller than UINT8_MAX */ transfer_len = transfer_len > CONFIG_SPI_MBUF_SIZE ? CONFIG_SPI_MBUF_SIZE : transfer_len; memcpy(_mbuf[bus], out_buf, transfer_len); out_mbuf = _mbuf[bus]; } uint8_t out_len = (out_buf) ? transfer_len : 0; uint8_t in_len = (in_buf) ? transfer_len : 0; dev(bus)->TXD.PTR = (uint32_t)out_mbuf; dev(bus)->RXD.PTR = (uint32_t)in_buf; dev(bus)->TXD.MAXCNT = out_len; dev(bus)->RXD.MAXCNT = in_len; /* clear any spurious END events */ dev(bus)->EVENTS_END = 0; dev(bus)->TASKS_START = 1; return transfer_len; } void spi_transfer_bytes(spi_t bus, spi_cs_t cs, bool cont, const void *out, void *in, size_t len) { const uint8_t *out_buf = out; uint8_t *in_buf = in; assert(out_buf || in_buf); if (cs != SPI_CS_UNDEF) { gpio_clear((gpio_t)cs); } /* Enable the workaround when the length is only 1 byte */ size_t _len = len; if (_len == 1) { _enable_workaround(bus); } /* Enable IRQ */ dev(bus)->INTENSET = SPIM_INTENSET_END_Msk; do { size_t transfer_len = _transfer(bus, out_buf, in_buf, len); /* Block until the irq releases the mutex, then lock it again for the * next transfer */ mutex_lock(&busy[bus]); out_buf += out_buf ? transfer_len : 0; in_buf += in_buf ? transfer_len : 0; len -= transfer_len; } while (len); /* Disable IRQ */ dev(bus)->INTENCLR = SPIM_INTENCLR_END_Msk; /** * While we could always disable the workaround, only doing this when * required spares us some cycles by not having to write to volatile * registers */ if (_len == 1) { _clear_workaround(bus); } if ((cs != SPI_CS_UNDEF) && (!cont)) { gpio_set((gpio_t)cs); } } void spi_isr_handler(void *arg) { spi_t bus = (spi_t)(uintptr_t)arg; mutex_unlock(&busy[bus]); dev(bus)->EVENTS_END = 0; }