/* * Copyright (C) 2014-2015 Freie Universität Berlin * 2015 Hamburg University of Applied Sciences * 2017-2020 Inria * 2017 OTA keys S.A. * 2021 Otto-von-Guericke-Universität Magdeburg * * This file is subject to the terms and conditions of the GNU Lesser General * Public License v2.1. See the file LICENSE in the top level directory for more * details. */ /** * @ingroup cpu_stm32 * @ingroup drivers_periph_gpio_ll_irq * @{ * * @file * @brief IRQ implementation of the GPIO Low-Level API for STM32 * * @author Hauke Petersen * @author Fabian Nack * @author Alexandre Abadie * @author Katja Kirstein * @author Vincent Dupont * @author Marian Buschsieweke * * @} */ #include #include "cpu.h" #include "bitarithm.h" #include "periph/gpio_ll_irq.h" #define ENABLE_DEBUG 0 #include "debug.h" #define EXTI_NUMOF (16U) #define EXTI_MASK (0xFFFF) #if defined(EXTI_SWIER_SWI0) || defined(EXTI_SWIER_SWIER0) # define EXTI_REG_SWIER (EXTI->SWIER) #endif #if defined(EXTI_SWIER1_SWI0) || defined(EXTI_SWIER1_SWIER0) # define EXTI_REG_SWIER (EXTI->SWIER1) #endif #if defined(EXTI_RTSR_RT0) || defined(EXTI_RTSR_TR0) # define EXTI_REG_RTSR (EXTI->RTSR) #endif #if defined(EXTI_RTSR1_RT0) || defined(EXTI_RTSR1_TR0) # define EXTI_REG_RTSR (EXTI->RTSR1) #endif #if defined(EXTI_FTSR_FT0) || defined(EXTI_FTSR_TR0) # define EXTI_REG_FTSR (EXTI->FTSR) #endif #if defined(EXTI_FTSR1_FT0) || defined (EXTI_FTSR1_TR0) # define EXTI_REG_FTSR (EXTI->FTSR1) #endif #if defined(EXTI_PR_PR0) # define EXTI_REG_PR (EXTI->PR) #elif defined(EXTI_PR1_PIF0) # define EXTI_REG_PR (EXTI->PR1) #else # define EXTI_REG_FPR (EXTI->FPR1) # define EXTI_REG_RPR (EXTI->RPR1) #endif #if defined(EXTI_C2_BASE) # define EXTI_REG_IMR (EXTI_C2->IMR1) #elif defined(EXTI_IMR_IM0) # define EXTI_REG_IMR (EXTI->IMR) #elif defined(EXTI_IMR1_IM0) # define EXTI_REG_IMR (EXTI->IMR1) #endif #ifdef RCC_APB2ENR_SYSCFGCOMPEN # define SYSFG_CLOCK APB2 # define SYSFG_ENABLE_MASK RCC_APB2ENR_SYSCFGCOMPEN #elif defined(RCC_APB2ENR_SYSCFGEN) # define SYSFG_ENABLE_MASK RCC_APB2ENR_SYSCFGEN # ifdef APB12 # define SYSFG_CLOCK APB12 # else # define SYSFG_CLOCK APB2 # endif #endif #ifdef RCC_APB3ENR_SYSCFGEN # define SYSFG_CLOCK APB3 # define SYSFG_ENABLE_MASK RCC_APB3ENR_SYSCFGEN #endif #ifdef EXTI_EXTICR1_EXTI0 # define EXTICR_REG(num) (EXTI->EXTICR[(num) >> 2]) #endif #ifdef SYSCFG_EXTICR1_EXTI0 # define EXTICR_REG(num) (SYSCFG->EXTICR[(num) >> 2]) #endif #ifdef AFIO_EXTICR1_EXTI0 # define EXTICR_REG(num) (AFIO->EXTICR[(num) >> 2]) #endif #ifdef SYSCFG_EXTICR1_EXTI1_Pos # define EXTICR_FIELD_SIZE SYSCFG_EXTICR1_EXTI1_Pos #endif #ifdef EXTI_EXTICR1_EXTI1_Pos # define EXTICR_FIELD_SIZE EXTI_EXTICR1_EXTI1_Pos #endif #ifdef AFIO_EXTICR1_EXTI1_Pos # define EXTICR_FIELD_SIZE AFIO_EXTICR1_EXTI1_Pos #endif void gpio_ll_irq_mask(gpio_port_t port, uint8_t pin) { (void)port; EXTI_REG_IMR &= ~(1 << pin); } void gpio_ll_irq_unmask_and_clear(gpio_port_t port, uint8_t pin) { (void)port; EXTI_REG_IMR |= (1 << pin); } struct isr_ctx { gpio_ll_cb_t cb; void *arg; }; static struct isr_ctx isr_ctx[EXTI_NUMOF]; static uint16_t level_triggered; static IRQn_Type get_irqn(uint8_t pin) { /* TODO: Come up with a way that this doesn't need updates whenever a new * MCU family gets added */ #if defined(CPU_FAM_STM32L5) || defined(CPU_FAM_STM32U5) return EXTI0_IRQn + pin; #elif defined(CPU_FAM_STM32F0) || defined(CPU_FAM_STM32L0) || \ defined(CPU_FAM_STM32G0) || defined(CPU_FAM_STM32C0) if (pin < 2) { return EXTI0_1_IRQn; } else if (pin < 4) { return EXTI2_3_IRQn; } else { return EXTI4_15_IRQn; } #elif defined(CPU_FAM_STM32MP1) if (pin < 5) { return EXTI0_IRQn + pin; } else if (pin < 6) { return EXTI5_IRQn; } else if (pin < 10) { return EXTI6_IRQn + pin - 6; } else if (pin < 11) { return EXTI10_IRQn; } else if (pin < 12) { return EXTI11_IRQn; } else if (pin < 14) { return EXTI12_IRQn + pin - 12; } else if (pin < 15) { return EXTI14_IRQn; } else { return EXTI15_IRQn; } #else if (pin < 5) { return EXTI0_IRQn + pin; } else if (pin < 10) { return EXTI9_5_IRQn; } else { return EXTI15_10_IRQn; } #endif } static void clear_pending_irqs(uint8_t pin) { #ifdef EXTI_REG_PR /* same IRQ flag no matter if falling or rising edge detected */ EXTI_REG_PR = (1U << pin); #else /* distinct IRQ flags for falling and rising edge, clearing both */ EXTI_REG_FPR = (1U << pin); EXTI_REG_RPR = (1U << pin); #endif } static void set_exti_port(uint8_t exti_num, uint8_t port_num) { uint32_t tmp = EXTICR_REG(exti_num); tmp &= ~(0xf << ((exti_num & 0x03) * EXTICR_FIELD_SIZE)); tmp |= (port_num << ((exti_num & 0x03) * EXTICR_FIELD_SIZE)); EXTICR_REG(exti_num) = tmp; } static uint8_t get_exti_port(uint8_t exti_num) { uint32_t reg = EXTICR_REG(exti_num); reg >>= (exti_num & 0x03) * EXTICR_FIELD_SIZE; return reg & 0xf; } int gpio_ll_irq(gpio_port_t port, uint8_t pin, gpio_irq_trig_t trig, gpio_ll_cb_t cb, void *arg) { unsigned irq_state = irq_disable(); int port_num = GPIO_PORT_NUM(port); /* set callback */ isr_ctx[pin].cb = cb; isr_ctx[pin].arg = arg; /* enable clock of the SYSCFG module for EXTI configuration */ #ifdef SYSFG_CLOCK periph_clk_en(SYSFG_CLOCK, SYSFG_ENABLE_MASK); #endif /* enable global pin interrupt */ NVIC_EnableIRQ(get_irqn(pin)); /* configure trigger */ if (trig & GPIO_TRIGGER_EDGE_RISING) { EXTI_REG_RTSR |= 1UL << pin; } else { EXTI_REG_RTSR &= ~(1UL << pin); } if (trig & GPIO_TRIGGER_EDGE_FALLING) { EXTI_REG_FTSR |= 1UL << pin; } else { EXTI_REG_FTSR &= ~(1UL << pin); } set_exti_port(pin, port_num); clear_pending_irqs(pin); gpio_ll_irq_unmask_and_clear(port, pin); if (trig & GPIO_TRIGGER_LEVEL) { level_triggered |= 1UL << pin; /* if input is already at trigger level there might be no flank, so issue soft IRQ */ uint32_t actual_level = gpio_ll_read(port) & (1UL << pin); uint32_t trigger_level = EXTI_REG_RTSR & (1UL << pin); if (actual_level == trigger_level) { EXTI_REG_SWIER = 1UL << pin; } } else { level_triggered &= ~(1UL << pin); } irq_restore(irq_state); return 0; } static uint32_t get_and_clear_pending_irqs(void) { #ifdef EXTI_REG_PR /* only one pending IRQ flag register for both falling and rising flanks */ uint32_t pending_isr = (EXTI_REG_PR & EXTI_MASK); /* clear by writing a 1 */ EXTI_REG_PR = pending_isr; return pending_isr; #else /* distinct registers for pending IRQ flags depending on rising or falling * flank */ uint32_t pending_rising_isr = (EXTI_REG_RPR & EXTI_MASK); uint32_t pending_falling_isr = (EXTI_REG_FPR & EXTI_MASK); /* clear by writing a 1 */ EXTI->RPR1 = pending_rising_isr; EXTI->FPR1 = pending_falling_isr; return pending_rising_isr | pending_falling_isr; #endif } void isr_exti(void) { uint32_t pending_isr = get_and_clear_pending_irqs(); /* only generate soft interrupts against lines which have their IMR set */ pending_isr &= EXTI_REG_IMR; /* iterate over all set bits */ uint8_t pin = 0; while (pending_isr) { pending_isr = bitarithm_test_and_clear(pending_isr, &pin); isr_ctx[pin].cb(isr_ctx[pin].arg); /* emulate level triggered IRQs by asserting the IRQ again in software, if needed */ if (level_triggered & (1UL << pin)) { /* Trading a couple of CPU cycles to not having to store port connected to EXTI in RAM. * A simple look up table would save ~6 instructions for the cost 64 bytes of RAM. */ gpio_port_t port = GPIO_PORT(get_exti_port(pin)); uint32_t actual_level = gpio_ll_read(port) & (1UL << pin); uint32_t trigger_level = EXTI_REG_RTSR & (1UL << pin); if (actual_level == trigger_level) { EXTI_REG_SWIER = 1UL << pin; } } } cortexm_isr_end(); }