/* * Copyright (C) 2021 Otto-von-Guericke Universität Magdeburg * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_rpx0xx * @ingroup drivers_periph_timer * @{ * * @file * @brief Timer implementation for the RPX0XX * @details The RPX0XX has a 64 bit µs timer but timer interrupts match * on the lower 32 bits. * * @author Fabian Hüßler * * @} */ #include #include #include #include #include "vendor/RP2040.h" #include "io_reg.h" #include "timex.h" #include "periph_conf.h" #include "periph/timer.h" #define DEV(d) (timer_config[d].dev) #define ALARM(d, a) ((&(DEV(d)->ALARM0)) + (a)) static timer_cb_t _timer_ctx_cb[TIMER_NUMOF]; static void *_timer_ctx_arg[TIMER_NUMOF]; static unsigned _timer_flag_periodic[TIMER_NUMOF]; static unsigned _timer_flag_reset[TIMER_NUMOF]; static inline uint64_t _timer_read_us(tim_t dev) { /* This is not safe when the second core also accesses the timer */ unsigned state = irq_disable(); uint32_t lo = DEV(dev)->TIMELR; /* always read timelr to latch the value of timehr */ uint32_t hi = DEV(dev)->TIMEHR; /* read timehr to unlatch */ irq_restore(state); return ((uint64_t)hi << 32U) | lo; } static inline void _timer_reset(tim_t dev) { unsigned state = irq_disable(); DEV(dev)->TIMELW = 0; /* always write timelw before timehw */ DEV(dev)->TIMEHW = 0; /* writes do not get copied to time until timehw is written */ irq_restore(state); } static inline void _timer_enable_periodic(tim_t dev, int channel, uint8_t flags) { _timer_flag_periodic[dev] |= (1U << channel); if (flags & TIM_FLAG_RESET_ON_MATCH) { _timer_flag_reset[dev] |= (1U << channel); } else { _timer_flag_reset[dev] &= ~(1U << channel); } } static inline void _timer_disable_periodic(tim_t dev, int channel) { _timer_flag_periodic[dev] &= ~(1U << channel); } static inline bool _timer_is_periodic(tim_t dev, int channel) { return !!(_timer_flag_periodic[dev] & (1U << channel)); } static inline bool _timer_reset_on_match(tim_t dev, int channel) { return !!(_timer_flag_reset[dev] & (1U << channel)); } static inline void _irq_enable(tim_t dev) { for (uint8_t i = 0; i < timer_config[dev].ch_numof; i++) { NVIC_EnableIRQ(timer_config[dev].ch[i].irqn); io_reg_atomic_set(&DEV(dev)->INTE.reg, (1U << i)); } } static void _isr(tim_t dev, int channel) { /* clear latched interrupt */ io_reg_atomic_clear(&DEV(dev)->INTR.reg, 1U << channel); if (_timer_is_periodic(dev, channel)) { if (_timer_reset_on_match(dev, channel)) { _timer_reset(dev); } /* rearm */ *ALARM(dev, channel) = *ALARM(dev, channel); } if (_timer_ctx_cb[dev]) { _timer_ctx_cb[dev](_timer_ctx_arg[dev], channel); } cortexm_isr_end(); } int timer_init(tim_t dev, uint32_t freq, timer_cb_t cb, void *arg) { if (dev >= TIMER_NUMOF) { return -ENODEV; } /* The timer must run at 1000000 Hz (µs precision) because the number of cycles per µs is shared with the watchdog. The reference clock (clk_ref) is divided by WATCHDOG->TICK.bits.CYCLES to generate µs ticks. */ assert(freq == US_PER_SEC); (void)freq; _timer_ctx_cb[dev] = cb; _timer_ctx_arg[dev] = arg; periph_reset(RESETS_RESET_timer_Msk); periph_reset_done(RESETS_RESET_timer_Msk); io_reg_write_dont_corrupt(&WATCHDOG->TICK.reg, (CLOCK_XOSC / MHZ(1)) << WATCHDOG_TICK_CYCLES_Pos, WATCHDOG_TICK_CYCLES_Msk); _irq_enable(dev); return 0; } int timer_set(tim_t dev, int channel, unsigned int timeout) { if (dev >= TIMER_NUMOF) { return -ENODEV; } if (channel < 0 || channel >= timer_config[dev].ch_numof) { return -EINVAL; } if (!timeout) { /* execute callback immediately if timeout equals 0, to ctach the case that a tick happens right before arming the alarm and causes a full timer period to elaps */ if (_timer_ctx_cb[dev]) { _timer_ctx_cb[dev](_timer_ctx_arg[dev], channel); } } else { unsigned state = irq_disable(); _timer_disable_periodic(dev, channel); /* an alarm interrupt matches on the lower 32 bit of the 64 bit timer counter */ uint64_t target = DEV(dev)->TIMERAWL + timeout; *ALARM(dev, channel) = (uint32_t)target; irq_restore(state); } return 0; } int timer_set_absolute(tim_t dev, int channel, unsigned int value) { if (dev >= TIMER_NUMOF) { return -ENODEV; } if (channel < 0 || channel >= timer_config[dev].ch_numof) { return -EINVAL; } unsigned state = irq_disable(); _timer_disable_periodic(dev, channel); *ALARM(dev, channel) = (uint32_t)value; irq_restore(state); return 0; } int timer_set_periodic(tim_t dev, int channel, unsigned int value, uint8_t flags) { if (dev >= TIMER_NUMOF) { return -ENODEV; } if (channel < 0 || channel >= timer_config[dev].ch_numof) { return -EINVAL; } if (flags & TIM_FLAG_SET_STOPPED) { timer_stop(dev); } if (flags & TIM_FLAG_RESET_ON_SET) { _timer_reset(dev); } unsigned state = irq_disable(); _timer_enable_periodic(dev, channel, flags); *ALARM(dev, channel) = (uint32_t)value; irq_restore(state); return 0; } int timer_clear(tim_t dev, int channel) { if (dev >= TIMER_NUMOF) { return -ENODEV; } if (channel < 0 || channel >= timer_config[dev].ch_numof) { return -EINVAL; } /* ARMED bits are write clear */ io_reg_atomic_set(&DEV(dev)->ARMED.reg, (1 << channel)); unsigned state = irq_disable(); _timer_disable_periodic(dev, channel); irq_restore(state); return 0; } unsigned int timer_read(tim_t dev) { if (dev >= TIMER_NUMOF) { return -ENODEV; } return _timer_read_us(dev); } void timer_start(tim_t dev) { assert(dev < TIMER_NUMOF); io_reg_atomic_clear(&DEV(dev)->PAUSE.reg, (1 << TIMER_PAUSE_PAUSE_Pos)); } void timer_stop(tim_t dev) { assert(dev < TIMER_NUMOF); io_reg_atomic_set(&DEV(dev)->PAUSE.reg, (1 << TIMER_PAUSE_PAUSE_Pos)); } /* timer 0 IRQ0 */ void TIMER_0_ISRA(void) { _isr(0, 0); } /* timer 0 IRQ1 */ void TIMER_0_ISRB(void) { _isr(0, 1); } /* timer 0 IRQ2 */ void TIMER_0_ISRC(void) { _isr(0, 2); } /* timer 0 IRQ3 */ void TIMER_0_ISRD(void) { _isr(0, 3); }