/* * Copyright (C) 2017 HAW Hamburg * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ /** * @ingroup cpu_nrf52 * @{ * * Any one of the available channels can be enabled for the ADC to operate in * one-shot mode. If more than one CH[n] is configured, the ADC enters scan mode. * * Example of RAM placement (RESULT.MAXCNT = 8), all channels enabled: * * 31 16 15 0 * RESULT.PTR = adc_val[0] | CH[1] | CH[0] | * RESULT.PTR + 4 | CH[3] | CH[2] | * RESULT.PTR + 8 | CH[5] | CH[4] | * RESULT.PTR + 12 | CH[7] | CH[6] | * * Example of RAM placement (RESULT.MAXCNT = 4), channels 0, 3, 4 and 7 enabled: * * 31 16 15 0 * RESULT.PTR = adc_val[0] | CH[3] | CH[0] | * RESULT.PTR + 4 | CH[7] | CH[4] | * RESULT.PTR + 8 | | | * RESULT.PTR + 12 | | | * * Scan mode and oversampling cannot be combined. * -> 8/10/12-bit resolution, 14-bit resolution only with oversampling * * @file * @brief Low-level ADC driver implementation * * @author Dimitri Nahm * * @} */ #include "cpu.h" #include "mutex.h" #include "periph/adc.h" #include "periph_conf.h" #ifdef ADC_NUMOF static int16_t adc_val[ADC_NUMOF]; static uint8_t adc_ch_enabled = 0; static uint8_t adc_return_idx; /** * @brief Lock to prevent concurrency issues when used from different threads */ static mutex_t lock; static inline void prep(void) { mutex_lock(&lock); NRF_SAADC->ENABLE = 1; } static inline void done(void) { NRF_SAADC->ENABLE = 0; mutex_unlock(&lock); } int adc_init(adc_t line) { if (line >= ADC_NUMOF) { return -1; } if ((adc_ch_enabled & (1 << line)) == 0) { /* prepare device */ prep(); /* set the number of enabled channels and the data pointer */ NRF_SAADC->RESULT.MAXCNT += 1; NRF_SAADC->RESULT.PTR = (uint32_t)&adc_val; /* set ADC channel and use VDD (+5V) as reference */ NRF_SAADC->CH[line].PSELP = line + 1; NRF_SAADC->CH[line].CONFIG = (SAADC_CH_CONFIG_GAIN_Gain1_4 << SAADC_CH_CONFIG_RESN_Pos) | (SAADC_CH_CONFIG_REFSEL_VDD1_4 << SAADC_CH_CONFIG_REFSEL_Pos); /* calibrate the SAADC */ NRF_SAADC->EVENTS_CALIBRATEDONE = 0; NRF_SAADC->TASKS_CALIBRATEOFFSET = 1; while (NRF_SAADC->EVENTS_CALIBRATEDONE == 0) {} /* remember which ADC channel is enabled */ adc_ch_enabled |= (1 << line); /* free device */ done(); } return 0; } int adc_sample(adc_t line, adc_res_t res) { assert(line < ADC_NUMOF); /* check if resolution is valid */ if (res > 2) { return -1; } /* prepare device */ prep(); /* set resolution */ NRF_SAADC->RESOLUTION = res; /* start the SAADC and wait for the started event */ NRF_SAADC->EVENTS_STARTED = 0; NRF_SAADC->TASKS_START = 1; while (NRF_SAADC->EVENTS_STARTED == 0) {} /* start conversions and wait for conversions to be complete */ for (uint8_t i = 0; i < NRF_SAADC->RESULT.MAXCNT; i++) { while (NRF_SAADC->STATUS == (SAADC_STATUS_STATUS_Busy << SAADC_STATUS_STATUS_Pos)) {} NRF_SAADC->EVENTS_DONE = 0; NRF_SAADC->TASKS_SAMPLE = 1; while (NRF_SAADC->EVENTS_DONE == 0) {} } /* stop the SAADC */ NRF_SAADC->EVENTS_STOPPED = 0; NRF_SAADC->TASKS_STOP = 1; while (NRF_SAADC->EVENTS_STOPPED == 0) {} /* free device */ done(); /* return the ADC value for the given line */ adc_return_idx = 0; for (uint8_t i = 0; i < line; i++) { if (adc_ch_enabled & (1 << i)) { adc_return_idx++; } } if (adc_val[adc_return_idx] < 0) { return 0; } return adc_val[adc_return_idx]; } #else typedef int dont_be_pedantic; #endif /* ADC_CONFIG */