/* * Copyright (C) 2016 Kaspar Schleiser * 2014, Freie Universitaet Berlin (FUB) & INRIA. * All rights reserved. * * This file is subject to the terms and conditions of the GNU Lesser * General Public License v2.1. See the file LICENSE in the top level * directory for more details. */ #include "cpu.h" #include "kernel_init.h" #include "irq.h" #include "sched.h" #include "thread.h" /* * This function can both be called from ISR and from thread context. * * In both cases, the caller will use "CALL", which pushes the return * address on the stack before executing the function's first instruction. * * If called within ISR, just set sched_context_switch_request and * directly return to the call site. A regular function return does this. * * If called from stack context, it needs to prepare the stack so it looks exactly * as if the thread had been interrupted by an ISR, which requires the SR to be on * stack right after the return address. So we do this manually. * __save_context() will then save the remaining registers, then store the stack * pointer in the thread's thread_t. * * At this point, the thread context is properly saved. sched_run (possibly) changes * the currently active thread, which __restore_context() then restores, resuming * execution at the call site using reti. * */ void thread_yield_higher(void) { if (irq_is_in()) { sched_context_switch_request = 1; } else { __asm__ volatile ( "push r2" "\n\t" /* save SR */ "dint" "\n\t" /* reti will restore SR, and thus, IRQ state */ "nop" "\n\t" /* dint takes an additional CPU cycle to take into effect */ : /* no outputs */ : /* no inputs */ : /* no clobbers */ ); __save_context(); /* have thread_get_active() point to the next thread */ sched_run(); __restore_context(); UNREACHABLE(); } } /* This function calculates the ISR_usage */ int thread_isr_stack_usage(void) { /* TODO */ return -1; } void *thread_isr_stack_pointer(void) { /* TODO */ return (void *)-1; } void *thread_isr_stack_start(void) { /* TODO */ return (void *)-1; } NORETURN void cpu_switch_context_exit(void) { sched_run(); __restore_context(); UNREACHABLE(); } /** * mspgcc handles main specially - it does not return but falls * through to section .fini9. * To "fix" this, we put a return in section .fini9 to make main * behave like a regular function. This enables a common * thread_stack_init behavior. */ __attribute__((section (".fini9"))) void __main_epilogue(void) { __asm__("ret"); } /* ------------------------------------------------------------------------- */ /* Processor specific routine - here for MSP */ /* ------------------------------------------------------------------------- */ char *thread_stack_init(thread_task_func_t task_func, void *arg, void *stack_start, int stack_size) { unsigned short stk = (unsigned short)((uintptr_t) stack_start + stack_size); /* ensure correct stack alignment (on 16-bit boundary) */ stk &= 0xfffe; unsigned short *stackptr = (unsigned short *)stk; /* now make SP point on the first AVAILABLE slot in stack */ --stackptr; *stackptr = (unsigned short) sched_task_exit; --stackptr; *stackptr = (unsigned short) task_func; --stackptr; /* initial value for SR */ *stackptr = GIE; --stackptr; /* Space for registers. */ for (unsigned int i = 15; i > 4; i--) { *stackptr = i; --stackptr; } /* set arg to R12 this was R15 in mspgcc, see https://www.ti.com/lit/an/slaa664/slaa664.pdf stackptr points to R3, so write arg 9 words after that. */ stackptr[8] = (intptr_t)arg; return (char *) stackptr; }